ORACLE

DATABASE

An Oracle White Paper
January 2012

Understanding Optimizer Statistics

ORACLE

Understanding Optimizer Statistics

INEFOAUCTION ... 1
What are Optimizer StatiStiCS?ccovvvviiiiiiiie e, 2
Table and Column SEAtISHICSuvvuuriiiiiiiiiiiiiiiiiiiiieeaees 2
Additional column StatiStiCS.........cevvvieeiiiiiie e 3
INAEX SEALISTICS ..vuuiieeeei e e 10
Gathering StatiStiCSuvviiii i 11
GATHER _TABLE_STATS ...oiiiiiiiiiiiiiiiiiieiiiiieisniieernenneeneeennnnnnnnnns 11
Changing the default value for the parameters in
DBMS_STATS.GATHER_* STATS ..o, 13
Automatic Statistics Gathering JObcccocoeeiiiiiiiiiiieie e, 15
Improving the efficiency of Gathering StatistiCsccccccvvviiinnis 18
Concurrent StatistiC gatNering...............ueeevuieiiiiiiiiiiiiiiieiii. 18
Gathering Statistics on Partitioned tablescccevvvviicieneeenn. 20
Managing StatiStICSc.covvuiiiiiii e 22
RESIONNG StatiStICS.....cciivviiiiei e 22
Pending StatiStiCScooeeeeeeeeeeeee e 23
Exporting / Importing StatiStiCScoovevieeiieeeen 23
Copying Partition STAtiStICSuuvuvrreieiiiiiiiiiiiiiiiiiiiiiiiiieiieeieeieeenns 25
Comparing StatiStiCS......ciiiieieiiiiiiiie e 26
LOCKING StatiStICS.....ccceiiieeiiiiiei e 27
Manually setting StatiStiCScooevvevieiiee e, 29
Other Types Of StatiStiCSccovvviiiiiiiiiiiiii 29
Dynamic Sampling........cooooeeiiiioiee 29
SYStem StAtiSHICS.....ccvviiiii i 31
Statistics on Dictionary Tables.............coooiviiiiiiiiceeee e, 32
Statistics 0N Fixed ODJECESuuvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeneeneeeaes 32

CONCIUSION e 33

Understanding Optimizer Statistics

Introduction

When the Oracle database was first introduced the decision of how to execute a SQL
statement was determined by a Rule Based Optimizer (RBO). The Rule Based Optimizer, as
the name implies, followed a set of rules to determine the execution plan for a SQL statement.
The rules were ranked so if there were two possible rules that could be applied to a SQL
statement the rule with the lowest rank would be used.

In Oracle Database 7, the Cost Based Optimizer (CBO) was introduced to deal with the
enhanced functionality being added to the Oracle Database at this time, including parallel
execution and partitioning, and to take the actual data content and distribution into account.
The Cost Based Optimizer examines all of the possible plans for a SQL statement and picks
the one with the lowest cost, where cost represents the estimated resource usage for a given
plan. The lower the cost the more efficient an execution plan is expected to be. In order for the
Cost Based Optimizer to accurately determine the cost for an execution plan it must have
information about all of the objects (tables and indexes) accessed in the SQL statement, and
information about the system on which the SQL statement will be run.

This necessary information is commonly referred to as Optimizer statistics. Understanding
and managing Optimizer statistics is key to optimal SQL execution. Knowing when and how to
gather statistics in a timely manner is critical to maintaining acceptable performance. This
whitepaper is the first in a two part series on Optimizer statistics, and describes in detail, with
worked examples, the different concepts of Optimizer statistics including;

1 What are Optimizer statistics
1 Gathering statistics
1 Managing statistics

1 Additional types of statistics

Understanding Optimizer Statistics

What are Optimizer Statistics?

Optimizer statistics are a collection of data that describe the datadihsebjects in the database.
These statistics are used byGp#Bmizerto choose the best execution plan for each SQL statement.
Statistics are stored in the data dictipaadcan be accessed using data dictionary views such as
USER_TAB_STATISTICS Optimizer statisticare different from the performance statistics visible
throughvs views The information in the V$ viewedates tahe state of the system and the SQL
workloadexecuting on.it

DATA DICTIONARY
| OPTIMIZER STATISTICS
L Index Table Column System

[0 Lo o | Lo
1 Preme_1 15-MOV-98
2 Promo_1 31-DEC-98

\\PROMO_PKIndex

\ PROMOTIONS Table Execution pla

— e

CPU& IO

Figure 1. Optimizer Statistics stored in the data dictionary used by the Optimizer to determine execution plans

Table and Column Statistics

Table statistics include information on the number of rows in the table, the number of data blocks

used for the tahlas well as the average row length in the tabl®piingzer uses this information

in conjunction with other statistitscompute the cost of various operations in an execution plan,

and to estimate the number of rows the operation will produce. For example, the cost of a table access
is calculated usitige number of data blocks combined wiita value of the parameter
DB_FILE_MULTIBLOCK_READ_COUNTO0uU can view table statistics in the dictionary view
USER_TAB_STATISTICS

Column statistics include information on the number of distinct values in a(btidnas well as
the minimum and maximwalue found in theolumn. You can viegolumnstatistics in the
dictionary vieWSER_TABCOL STATISTICS. TheOptimizeruses the column statisticiormation
in conjunction withthetable statistics (humber of rgtesestimate the number of rows that will be

Understanding Optimizer Statistics

returned by a SQL operatiéior examplgf a table has 100 recqgrdadthe table access evaluates an
equalitypredicate on a coluniimathas 10 distinct values, then@imizer assuming uniform data
distibution,estimates the cardinality tothenumber of rows in the table divided by the number of
distinct values for the column or 100/1QG=

SOL» SELECT counti*)
2 FROWM tab_with_100_rows
2 where col_nde_10 = 22

COUNT(*)

| Id | Operation 1 Mame | Rows | Bytes | Cost (ECPUNI Time
| ER T
|
30 (03 0000201

0 | SELECT STATEMENT | |
1| 50RT AGGREGATE | |
21 |

| |
31 |
* TRELE ACCESS STORAGE FULLID TAB_WITH_100_ROWS 0| |

|
|
| 10 1 3

Predicate Information (identified by operation id):

- ("COL_NDY_10"22) Cardinality estimate of 10 is calculated
Filtor("COL_ADV. 10"=2) by dividing NUM_ROWS (100) for the
table by NUM_DISTINCT (10} for the

" column

Figure 2. Cardinality calculation using basic table and column statistics

Additional column statistics

Basic table and column statistics tell the opti mi
tell theOptimizerabout the nature of the data in the table or column. For exangastétigtics

c an 0t Optimitet if thierk is a data skevaicolumnpor if there iscorrelation between columns

in a tablelnformation on the nature of the data can be provided @timaizerby using extensien

to basic statistics like, histograms, column groups, and expression statistics.

Histograms

Histograms tell th®ptimizerabout the distribution of data within a column. By d€¥eitlibut a
histogram)theOptimizerassumes a uniform distribution of rows acrostigtiect values in a

column. As described above,@imizercalculats the cardalityfor an equality predicate by

dividing the total number of rows in the table bytimder of distinct values in the column used in
theequalitypredicatelf the data distribution in that column is notform {.e.,a data skewhenthe
cardinalityestimate will bmcorrect. In order to accurately reflect aumdform data distribution, a
histogram is required on the column. The presence of a histogram changes the formula used by the
Optimizerto estimatéhe cardinalityand allows it to generatenore accuraexecution plan

Oracleautomaticallgetermines the columns that need histograms based on the column usage
information(SYS.COL_USAGE$, andthe presencef a data skew. For example, Oracle will not
automatically create a histograma vique columif it is only seen in equality predicates.

There arewio types of histograms, fregogor heighbalancedOracle determines the type of
histogranto becreated based on the number of distinct values in the column.

Understanding Optimizer Statistics

Frequency Histograms

Frequency histograms are created when the number of distinct values in the column is less than 254.
Oracle uses the following steps to create a frequency histogram.

1. Let s assume that Oracl e IiIPROMOICATEGORYNDD a frequen
columnof thePROMOTIOS table. The first step is to selecttROMO_CATEGORY_ftom
thePROMOTIOS table ordexdby PROMO_CATEGORY_.ID

2. EachPROMO_CATEGORY_ipthen @signed tis own histogram bucket (FigGje

PROMO CATEGORY 1D

Bucket 1 has end point 2

Bucket 2 has end point 3
Bucket 3 has end point3

Bucket 115 has end point3

Bucket 417 has end point9

Bucket 483 hasend point9
Bucket 484 has end point 10

Bucket 502 has end point 10
Bucket 503 has end point 10

[0}
o OO0 @ @ OO

Figure 3. Step 2 in frequency histogram creation

3. At this stage we could have more than 254 histogram bucketbusteékethat hold the
same value are then compressed into the highest bucket with that value. lrbtiikesese
through 115 areompressed into bucket5 andbucket$184 through 50&re compressed
into bucke603 andso on until théotalnumber of bucket@mainingquals the number of
distinct valuem the columr(Figure 4)Note the above steps are for illustration purposes.
The DBMS_STATS package has been optimized to build compressed histograms directly.

Understanding Optimizer Statistics

PROMO CATEGORY 1ID

2 ® Bucket1 hasend point2

3 ' Bucket 115 has end point 3
9 ' Bucket 483 has end point9
10 ' Bucket 503 has end point 10

Figure 4. Step 3 in frequency histogram creation: duplicate buckets are compressed

4. TheOptimizernow accuratgdeterninesthe cardinality for predicates on the
PROMO_CATEGORY_tmlumn using the frequency histogram. For exgimpllee predicate
PROMO_CATEGORY_#10, theOptimizerwould firstneed to determine how many buckets
in the histogram have 10 as their end plbidoes this bfindingthe bucket whose endpoint
is 10, bucke603 and thersubtractshe previous bucket number, buclég 8503- 483 = 20
Then thecardinality estimate would be calculagéty the following formula (numioér
bucketendpointd total number of bucket) X NUM_ROW30/503 X 50350 the number
of rows in theeROMOTOIS table whereROMO_CATEGORY_#10 is 2.

Height balanced Histograms

Heightbalanced histograms are created when the number of distinct values in the coltenn is grea
than 254In a heighbalanced histogram, column values are divided into buckets so that each bucket
contains approximately the same number of @nasle uses the following steps to create a-height
balanced histogram.

1. Let 6 s as s ume tirgh lkeighbdancdhistegramon esTeCary_ID
column of thecUSTOMER®blebecause the number of distinct values igiilsad CITY_ID
column is greater than 254 . Just like with a frequency histogthmfirst step is to
select th€usT_CITY_ID from the CUSTOMER&ble ordered byusT_CITY_ID.

2. There are 55,500 rows in ¢¥STOMER®ble and there is a maximum of 254 buckets in a
histogram. In order to have an equal number of rows in each bucket, Oracle must put 219
rows in each bucket. The 2189JST_CITY_ID from step one will become the endpoint for
the first bucket. In this catbat is 51043. The 488UST_CITY_ID from step one will
become the endpoint for teeconducket andso on until all 254 buckets are fi(leidure
5).

Understanding Optimizer Statistics

Rowcount CUST_CITY_ID

1 51040

2 51040

é19 l51043 ' Bucket 1 has end point 51043
Id38 l51044 ' Bucket 2 has end point 51044
5256 51166 ' Bucket 24 has end point 51166
5475 51166 ' Bucket 25 has end point51166
55500 l52531 ' Bucket 254 has end point51531

Figure 5. Step 2 of height-balance histogram creation: put an equal number of rows in each bucket

3. Once the buckets have been created Oracle checks to see if the endpoint of the first bucket is
the minimum value for tl/@JST_CITY_ID columnlf it is not adzerad bucke is added to
the histogram that has the minimum value foctfsg_CITY_ID columnas its end point
(Figure 6)

Rowcount CUST_CITY_ID

1 51040 ' Bucket 0 has end point 51040

2 51040

é19 51043 ' Bucket 1 has end point 51043
I438 51044 ' Bucket 2 has end point 51044
5256 51166 ' Bucket 24 has end point 51166
5475 51166 ' Bucket 25 has end point51166
55500 52531 ' Bucket 254 has end point51531

Figure 6. Step 3 of height-balance histogram creation: add a zero bucket for the min value

4. Just as with a frequency histogram, the findbstepompress the heiddlanced
histogramandremove the buckets with duplicate end points. The value 51166 is the end

Understanding Optimizer Statistics

point for bucket 24 and bucket 25 in our hdiglidnced histogram on the@ST_CITY_ID
column. So, bucket 24 willtlempressed in bucket @Bgure 7)

Rowcount CUST_CITY_ID

1 51040 ' Bucket 0 has end point 51040

2 51040

I219 51043 ' Bucket 1 has end point 51043
-;5,38 :_’»1044 ' Bucket 2 has end point 51044
:5475 :51166 ' Bucket 25 has end point51166
:55500 :52531 ' Bucket 254 has end point51531

Figure 7. Step 4 of height-balance histogram creation

TheOptimizernow computes a betteardinalityestimatdor predicates on the

CUST_CITY_ID column by using the heigftdlanced histogram. For examigethe
predcateCUST_CITY_ID =51806the Optimizerwould first check to see how many buckets
in the histogram ha¥d.806as thé& end point. In this case, the endpoint for bucket
136,137,138nd139is 51806info found inUSER_HISTOGRANSThe Optimizerthen uses

the following formula:

(Numberof bucket endpoist/ total number of buckets) X number of rows in the table

In this casd/254 X 55500 =874

Id	Operation	Hame	Rows	Bytes	Cost (ECPUDI Time
@	SELECT STATEMEWT		I I 408 (1007		
1	SORT AGGREGATE		11 51		
[* 2 | TABLE ACCESS FULLI CUSTOHERS 1 4370 1 406 (A1 000001 |

Yedicate Information (identified by operation id): Estimated determined
------------------ using formula {num

2 - Filter("CUST_CITY_ID"=51806) endpoints / total num
* buckets) X num_rows

Figure 8. Height balanced histogram used for popular value cardinality estimate

However, if the predicate wzissST_CITY_ID =52500Qwhich is not the endpoint for any
bucket then th®ptimizeruses a different formula. For values that are the endpoint for only
one bucket or are not an endpoint att@lOptimizeruses the following formula:

DENSITY X number of ravs in the table

Understanding Optimizer Statistics

whereDENSITY is calculated@n the flypduring optimization using an internahfala based
on information in the histograithe value foDENSITY seen in the dictionary view
USER_TAB_COL_STATISTICSIs not the value uség theOptimizerfrom Oracle Database
10.2.0.4 onwards. This value is recorded for bactevapatibilityas this is the value used
in Oracle Database 9i and earlier releases. #fukigermoreif the parameter
OPTIMIZER_FEATURES_ENABLIS set toversion release earliegan 10.2.0,4he value for
DENSITY in the dictionary viewill be used.

| Id | Operation | Mame | Rows | Bytes | Cost (ECPUDI Time I

SELECT STATEMENT | I 405 (1007 |

ol I I I
I 11 SORT AGGREGATE I I I 51 I I
I* 21 TABLE ACCESS FULLI CUSTOMERS | BRI 340 1 405 (1)1 00300301 |

Predicate Information (identified by operation idis. Estimated determined
using formula (density

2 - filter("CUST_CITY_ID"=R2G00) . Xnum_rows)

|-

Figure 9. Height balanced histogram used for non- popular value cardinality estimate

Extended Statistics

In Oracle Database 1 Extensions toolumnstatistics were introducé&tktended statistics
encompasses two additioyalesof statistics; column groups and expression statistics.

Column Groups

In realworld data, there is often a relationship (correlation) between the data stored in different
columns of the same table. Fxaraple, in theUSTOMEREble, the values in the
CUST_STATE_PROWCE column are influenced by the values ilcthgeNTRY_IDcolumn, as the state

of California is only going to be found in the United States.d$tgsiccolumnstatisticsthe
Optimizerhasno way of knowing about these#gatld relationshipsndcould potentially

miscalculate the cardinality if multiple columns from the same table are used in the where clause of a
statement. Th®ptimizercan be made aware of theseweal relatioships by having extended

statistics on tlsecolumns as a group.

By creating statistics on a group of column§)ptienizercan compute a better cardinality estimate
when severdhe columngrom the same table arsed together in a where clause @flastatement.
You can usthefunctionDBMS_STATS.CREATE_EXTENDED_STAsdefineacolumn group you
want to have statistics gathered ongasup Oncea columrgroup has beerreatedOracle will
automatically maintain the statistics on that colump gieen statistics are gathered on the, fabte
like it does for any ordinary colufigurel0.

Understanding Optimizer Statistics

SOL» SELECT DEMS_STATS,CREATE_EXTENMDED_STATS(rull,'customers', '(country_id, cust_state_province)')
2 FROM dual:

DEMS_STATS.CREATE_EXTENDED_STATS{NULL, "CUSTOHERS' , " (COUNTRY_ID,CUST_STATE_PROVINCE) ')

SYS_STUJGWLRVHSUSYIUSXNYS_TRe#4

SO
S0L> Exec DEMS_STATS.GATHER_TRELE_STATS{null,’customers’):

FLASOL procedure successfully completed,

Figure 10. Creating a column group on the CUSTOMER®ble

After creating the column group andjathering statistics, you will see an additional column, with a
systerrgenerated name, in the dictionary W8BR_TAB_COL_STATISTICS This new column
represents the column graiigurel).

SOL> SELECT column_name, num_distinct, num_nulls, histogram
2 FROM user_tab_col_statistics
3 WHERE table_name='CUSTOMERS':

COLUMM_HAHE NUM_DISTINCT MUM_NULLS HISTOGRAM
¥S_STUJGYLRVHSUSYDUSKENY4 _IR#4 145 0 _NONE
CUST_ID 55500 0 NONE
CUST_FIRST_NAME 1300 0 NOME
CUST_LAST_NAME 908 0 NONE
CUST_GENDER 2 0 NONE
CUST_YEAR_OF _BIRTH 79 0 NONE
CUST_MARITAL_STATUS 11 17428 NONE
CUST_STREET_ADDRESS 43300 0 NOWE
CUST_POSTAL_CODE 623 0 NOME
CUST_CITY 620 0 NONE
CUST_CITY_ID 620 0 HEIGHT BALANCED
CUST_STATE_PROVINCE 145 0 FREQUENCY
CUST_STATE_PROVINCE_ID 145 0 FREQUENCY
COUNTRY_ID 18 0 FREQUENCY
CUST_MAIN_PHONE _NUMBER 51344 0 NONE
CUST_INCOME_LEVEL 12 41 NONE
CUST_CREDIT_LIMIT 8 0 NONE
CUST_EMAIL 1693 0 NONE
CUST_TOTAL 1 0 NOWE
CUST_TOTAL_ID 1 0 FREQUENCY
CUST_SRC_ID 0 55500 NONE
CUST_EFF _FROM 1 0 NONE
CUST_EFF_TO 0 55500 NONE
CUST_VALID 2 0 NONE

Figure 11. System generated column name for a column group in USER_TAB_COL_STATISTICS

To map the systegenerated column name to the column group and to see what other extended
statistics exist for a user schgroa can query thdictionary viewSER_STAT_EXTENSIONgFigure
12.

SOL> SELECT table_name, extension_name, extenzion
2 FROM user_stat_extenzions
3 WHERE creator = 'USER':

TABLE_NAME EXTENSTON_MAME EXTENSION
CUSTOMERS SYS_STUJGYLRYHSUSYIUSHNA _TR#4 {"COUMTRY _ID","CUST_STHTE_PROVIMCE")
SALES SYS_STUOSKSOZATEZHFHTUUKELWICLL {"PROD_ID","CUST_ID"}

Figure 12. Information about column groups is stored in USER_STAT_EXTENSIONS

TheOptimizerwill now use the column group statistics, rather than the individual column statistics
when these columaseused togethén where clause predicafdet all of the columns in the column

Understanding Optimizer Statistics

group need to be present in the SQL statement fQptirizerto use extended statistics; only a
subset of the columns is necessary.

Expression Statistics

It is also possible to create extended statistics fprasson (including functions) helpthe

Optimizerto estimate the cardinality of a where clause predicate that has columns embedded inside
expressions. For example, if it is common to have a where clause {hadisse the UPPER
functiononaciso me r & s UPPERCUST nASTNMAME:B1 , then it would be beneficial to

create extended statisticstf@r expressiodPPERCUST_LAST_NAMEFigurel3).

SOL> SELECT DBMS_STATS,CREATE_EXTENIED_STATS(null,'CUSTOMERS'. ' (UPPER{CUST _LAST_NAMEI}')
2 FROM dual:

DBMS_STATS,CREATE_EXTENDED_STATSCMULL . 'CUSTOMERS' . ' (UPPERCCUST_LAST_NAMED) ')

SY5_STUSKCCIESMWEITBWTEPABA4LY

Figure 13. Extended statistics can also be created on expressions

Just as with column groups, statistics need tega¢hered on the table after the expression statistics
have beedefined After the statistidsave beegatheed an additional column with a system
generatedamewill appeam the dictionary vieWSER TAB_COL_STATISTICS representing the
expression statistidsaist like for column groups, the detailed information ekprgssiostatistis

can be found ISER_STAT_EXTENSIONS

Restrictions on Extended Statistics

Extended statistic:nonly be used whethe where the clause predicates are equalitidistsr in
Extended statistics will not be used if there are histograms present on the underlying columns and
there is no histogram present on the column group.

Index Statistics

Index statistics provideformation on the number of distinct values in the index (distinct keys), the
depth of the index (bleyethe number of leaf blocks in the infleaf blocks)and the clustering

factot. The Optimizeruses this informatidn conjunction with othestatsticsto determinghe cost

of anindex acces&or example th@ptimizerwill use Hevel, leaf _blocks and the table statistics
num_rows to determine the cost of an index rangéveltan all predicates are on the leading edge of
the index)

1 Chapter 11 of th®racle® Database Performance Tuning Guide

10

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/optimops.htm

Understanding Optimizer Statistics

Gathering Statistics

For database objects that@mestantly changing, stéiis must be regularly gathes@tha they

accurately describe thtabase objedthe PL/SQL packageBMS_STATSis Or acl eds preferre
method for gathering statistiaadreplaces thnow obsoletaNALYzE commandor collecting
statisticsTheDBMS_STAT$ackage containser 50 different procems forgathering anchanaging

statistics butnost importanbf thesgrocedursarethe GATHER* _STATS procedure These

procedures can be used to gather table, column, and index statistics. Youowik tleedwner of

the object or havilae ANALYZE ANYsystem privilege or the DBA role to run these procedures. The

parameters used theseprocedures are nearlyritieal so this paper will focus the

GATHER_TABLE_STATPprocedure.

GATHER_TABLE_STATS

TheDBMS_STATS.GATHER_TABLE_STAT®ocedurallowsyou to gather table, partitiamiex,and
column statistics. Although it takes 15 different parametgithedfrst two or threg@arameters need
to be specifietb run the procedurand aresufficientfor most customeys

9 The name of the schema containing the table

1 The name of the table

T A specific partiti ormndpoaanigwant focolledt statisticsforppar t i t i one
specific partitiofoptional)

30L» BEGIM
2 dbms_stats.gather_table_stats{'SH', 'SALES'):
3 END:
4

LASOL procedure successful ly completed,

Figure 14. Using the DBMS_STATS.GATHER_TABLE_STATS procedure

The remaining parameters can be left at their defautivahaest cases. Out of the remainigg 1
parametes;the following areftenchanged from their default and warrant some explanation here.

ESTIMATE_PERCENT parameter

TheESTIMATE_PERCENParameter determines the percentage of rows used to calculate the statistics.
The most accurate statistics are gathered when all rows iretheetpldcesséice.,100% sampje
oftenreferred to asomputed statisticOracle Database litdgroduceda newsampling algorithm

that is hash based and provitgministic statisticT his new approach has the accuiasg to a

2 ANALYZE command is still ude¢o VALIDATE or LIST CHAINED ROWS

11

Understanding Optimizer Statistics

100% samplut withthe costof, at most, 40% sample. Theew algorithm is used when
ESTIMATE_PERCENTSs set toAUTO_SAMPLE_SIZHthedefault) in any of the
DBMS_STATS.GATHER_*_STAT®roceduredistoricallycustomers have set the
ESTIMATE_PRECENParameter to law value to ensure that the statistics will be gatiaobdy.
Howeverwithout detailed testing, it is difficult to knehichsample size to use to get accurate
statistics.t is highly recommendégiatfrom Oracle Database 11g onward you let
ESTIMATE_PRECENTefault (i.e not set explicitly)

METHOD_OPT parameter

TheMETHOD_oOPparameter controls the creation of histograms during statistics collection.

Histograms are a special typeabfimnstatistic created wherettlata in a table column hama

uniform distributionas discussed in the previous section géapey. Withthe default value 60R

ALL COLUMNSSIZE AUTQ Oracle automatically determines which columns ragtirgrams and

the number of buckets thatlvbie used based on theurnh usagénformation
(DBMS_STATS.REPORT_COL_USAGNd the number of distinct values in the coldima column

usage information reflects an analysis of all the SQL operations the database has processed for a given
object.Column usage tracking is enabledefault

A column is a candidate for a histogram if it has been seen in a where clauses gedicageality,
range, LIKE, etc. Oractdsoverifiesif the columrdatais skewed before creating a histogram, for
example a unigue column will not have a histogram createflitais nly seen in equality predicates
It is strongly recommended you letNtEFHOD_OPparameter default in tiRATHER_*_STATS
procedures.

DEGREE parameter

The DEGREBarameer controlghe number of parallel server processes that will be used to gather the
statistics. By default Oraclestke same number of parallel server procggeediedis an attribute

of the tablan the data dictionaripégree of Paralleli3rBy default, alables in an Oracle database

have tlis attributeset to 1 so t may be useful to set this parameter if statistics are being gataered
large tabléo speed up statistics collectiBy settinghe parametedEGRERO AUTO_DEGREEDracle

will automaticht determine the appropriate number of parallel server prolcassheuld be used to
gather statisticbased on the size of an objébe value can be betwde(serial execution) for small
objectdo DEFAULT_DEGREEPARALLEL_THREADS_PER_CPU X CPU_C®U) for larger objects.

GRANULARITY parameter

The GRANULARITYparametedictateghe levels at which statistics are gathered on a partitioned table.
The possible levels are table (global), partition,-pasditibn. By default Oracle will determine kwhic
levels are necesshaged ohet a b gartitidréngstrategy Statistics are always gathered on the first
level of partitioimgregardless of the partitioning type usedp8rthion statistics are gathered when
thesulpartitioning type iISIST or RANGEThis parameter is ignored if the table is not partitioned.

12

Understanding Optimizer Statistics

CASCADE parameter

TheCASCADBparametedetermines whether or not statistics are gathered for the indexes on a table.

By defaultauTO_CAScAREOracle will only rgather statistics fordexeswhoseablestatistics are
staleCascade is often set to false when a large direct path data load is done and the indexes are
disabled. After the load has been completed, the indexes are rebuilt and statistics will be automatically
created for thm, negating the need to gather index statistics when the table statistics are gathered.

NO_INVALIDATE parameter

TheNO_INVALIDATE parametedeterminegif dependent cursorsufsorghat access the table whose
statistics are beinggathered) will be invalidated immediately after statistics are gathered/ibh not.
the default setting 0lBMS_STATS.AUTO_INVALIDATE cursorgstatementthat have already been
parsedlwill not be inalidated immediately. They will continue to use thbyilamsing theprevious
statistics until Oracle decides to invalidate the dependentlcassdrsinternal heuristicIhe
invalidations will happen gradually over time to ensure there iornogeé impact on the shared
poolor spike in CPU usags there could beyibu have large number of dependeuntsors andll

of them were hard parsed at once.

Changing the default value for the parameters in DBMS_STATS.GATHER_* STATS

You canspecify a particulapn-defaultparameter valder an individual
DBMS_STATS.GATHER_*_STAT8ommandor override the default valiog yourdatabaserou can
overridethe defaultparametevaluedor DBMS_STATS.GATHER_* STATSrocedures usingthe
DBMS_SATS.SET_* PREFS proceduresThe list of parameters th@nbechangd are as follows

AUTOSTATS_TARGET (SET_GLOBAL_PREF8nNlyas it relates to the auto stat$ job

CONCURRENT (SET_GLOBAL_PREFS only)
CASCADE

DEGREE

ESTIMATE_PERCENT

METHOD_OPT

NO_INVALIDATE
GRANULARITY
PUBLISH
INCREMENTAL
STALE_PERCENT

You can override the default settifiogeach parametat a table, schema, database, or global level
using one of the followim@BMS_STATS.SET_* PREFrocedureswith the exception of
AUTOSTATS_TARGEAndCONCURREN®hich can only be modified at the global level.

SET_TABLE_PREFS
SET_SCHEMA_PREFS
SET_DATABASE_PREFS
SET_GLOBAL_PREFS

13

Understanding Optimizer Statistics

TheSET_TABLE_PREFSrocedure allows you to change the default values of the parameters used by
theDBMS_STATS.GATHER_* STAT®rocedures for the specified table only.

TheSET_SCHEMA_PREFRgrocedure allows you to change the default values of the parameters used by
theDBMS_STATS.GATHER_*_STAT®rocedures for all of the existing tables in the specimtac

This procedure actually c#tisSET_TABLE_PREFrocedurdor each of the tables in the specified
schema. Since it uSET_TABLE_PREFS calling this procedure will not affect any new objects

created after it has been run. New objects will pitiegnoBALpreference values for all parameters.

TheSET_DATABASE_PREFBrocedure allows you to change the default values of the parameters used
by theDBMS_STATS.GATHER_* STATProcedures for all of the uskefined schemas in the database.
This procedwr actually callke SET_TABLE_PREFrocedurdor each table in each udefined

schema. Since it usSET_TABLE_PREFShis procedure will not affect any new objects created after it
has been run. New objects will pick upaih@BA preference values falt parameters. It is also

possible to include the Oracle owned schemas (sys, system, etc) by setingvtgemrameter to

TRUE

TheSET_GLOBAL_PREF®rocedure allows you to change the default values of the parameters used by
theDBMS_STATS.GATHER_*STATS procedures for any object in the database that does not have an
existing table preferenckll parameters default to the global setting unless there is a table preference
set or the parameter is explicitly set indAgHER_*_STATScommand. Changenade by this

procedure will affect any new objects created after it has been run. New objects will pick up the
GLOBAL_PREE values for all parameters.

With SET_GLOBAL_PREF$t is also possible to set a default valugviimadditional parameger
AUTOSTAT_TARGE®Nd CONCURRENTAUTOSTAT_TARGEToNtrols what objects the automatic

statistic gathering job (that runs in the nightly maintenance window) will look after. The possible values
for this parameter areL, ORACLE, andAUTO The default valueAUTO A more indepth discussion

about the automatic statistics collection can be found in the statistics management section of this
paper.

The CONCURRENParameter controls whether or rstatisticsvill be gatheredn multiple tables in a
schema (oratabase), and multiple (sub)partitions within a table concultrenédyBoolean
parameterandis set to FALSE by default. The value of the CONCURRENT parameter does not
impact the automatic statistics gathering job, which always does one dijectAnaore irdepth
discussion about concurrent statistics gathering can be found in the Improving the efficiency of
Gathering Statistics section of this paper.

TheDBMS_STATS.GATHER_STATS procedureand the automatic statistics gatheringljeys e
following hierarchy for parameter values; parameter values explicitly set in the command overrule
everythinglse If the parameter has not been set in the command, we check for a table level
preference. If there is no table preference set, we udedBAGpreference.

14

Understanding Optimizer Statistics

DBMS_STAT.GATHER_*_STATS
parameter hierarchy

Figure 15. DBMS_STATS.GATHER_*_STATS hierarchy for parameter values

If you are unsure of what preferences have begniseain use the#BMS_STATS.GET_PREFS
function to check. The functidakeghreeargumentghe name of thparameter, the schema name,
and the table name. In the example b@igure 1§ we first check the valueSIfALE_PRECENDN
theSH.SALES table. The we set a table level prefereacelcheck that it tookffect using
DBMS_STATS.GET_PREFS

SOL>» SELECT dbms_stats,get_prefs('STALE_PERCENT', 'SH', 'SALES') stale_percent
2 FEOM dual:

STALE_PERCENT

10

S0L> 1

SOL> BEGIN
5" dbms_stats,set_table_prefs('SH', 'SALES', 'STALE_PERCENT', 'ES'):
2 END:
4/

PLASOL procedure successfully completed,

S

SOL> SELECT dbms_stats,get_prefs('STALE_PERCEMT', 'SH', 'SALES') stale_percent
2 FROM dual:

STALE_PERCENT

Bo

Figure 16. Using DBMS_STATS.SET_PREFS procedure to change the parameter stale_percent for the sales table

Automatic Statistics Gathering Job

Oracle will automatically collect statistics for all database objects, which are missing statistics or have
stale statistics by running an Oracle Autof@akluring a predefined maintenance window (10pm to
2am weekdays and 6am to 2am at the weekends).

This AutoTaslkather©©ptimizerstatistics by calling the internal procedure
DBMSSTATS.GATHER_DATABASE_STATS_JOB_PROLhis procedure operates in a very similar

15

Understanding Optimizer Statistics

fashion to th&®BMS_STATS.GATHER_DATABASE_STAp®cedure using tl@ATHER AUTGption.

The primary difference is that Oracle internally prioritizes the database objects that require statistics, so
that those objects, which most need updated statistics, are processed first. You can verify that the
automatic statistics gathering job exists by quéngDBA_AUTOTASK_CLIENT_JORiew or through

Enterprise Manag@Figure 17)You can also change the maintenance window that the job will run in
through Enterprise Manager.

CRACLE Enterprise Manager Mg
Datahase Control

Cluster Database: DBM > Automated Maintenance Tasks >

Automated Maintenance Tasks Conﬁguration
Global Status (5 Enabled O Disabled

Task Settings
IOptimnzer Statistics Gathering & Enabled O Disahled] Configure)
Segment Advisor (&) Enabled O Disabled
Autornatic SGL Tuning O Enabled @ Disabled |_Configure)

Maintenance Window Group Assignment

| Edit Window Group |
Window Optimizer Statistics Gathering Segment Advisor Automatic SOL Tuning

Select All| Select Mone Select All| Select Mone Select All|Select Mane
THURSDAY WINDOW
ERIDAY WINDOW

SATURDAY WINDOW
SUNDAY WINDOWY

RACHN DAY WMDY
TUESDAY WINDOWY
YWEDNESDAY WINDOWY

EEREEEEE
EEREEEREA

Figure 17. Checking that the automatic statistics gathering job is enabled

Statstics on a table are considered stale when moThan PERCENTdefault 10%) of the rows

are changed (totalimberof inserts, deletes, updates) in the table. Oracle monitors the DML activity
for alltablesand records it in the SGA. The monitoiirfgrmation is periodically flushed to deskd

is exposed in the TAB_MODIFICATIONS view.

16

Understanding Optimizer Statistics

SOL> SELECT table_name, inserts, updates, deletes
2 FROM USER_TAB_MODIFICATIONS
3 WHERE table_name='PRODUCTSZ2"+

TABLE_NAME INSERTS UPDATES DELETES

PRODUCTS2 766 1532 a8

Figure 18. Querying USER_TAB_MODIFICATIONS view to check DML activity on the PRODUCT Stable

It is possible to manually flush this data by ctikpyocedue
DBMS_STATS.FLUSH_DATABASE_MONITORING_INFOyou want to get ufp-date informatiomt
guernytime (internallythe monitoring data fhishedbeforeall statisticgollection operatiohsrou can
then see which tables have stale statistics by quergingLiaeSTATScolumn in the
USER_TAB_STATISTICSView.

SOL» connect hrdhr

Connected,

SOL> SELECT table_name, stale_stats
2 FROM uzer_tab_statiztics:

THELE_MAHE STALE_STATS
COUNTRIES NO
DEPARTHEWTS NO
EMPLOYEES O

JOBS

JOB_HISTORY NO
LOCATIONS NO

REGIONS YES

Figure 19. Querying USER_TAB_STATISTICS to see if any tables have stale statistics

Tables whersTALE_STATS is set taNQ have up talate statistics. Tables wWh&TALE_STATS is set
to YES have stale statistics. Tables WdIBXEE_STATS is not set are missing statistics altogether.

If you already have a westablished statistics gathering procedure or if for some other reason you
want to disable automatic statistics gathering for your main application schema, consider leaving it on
for the dictionary tables. You can do this by changing the valtldSfTATS_TARGED ORACLE

instead oAUTOUSINgDBMS_STATS.SET_GLOBAL_PREF@rocedure

BEGIN
DBMS_STATS.SET_GLOBAL_ PREFSAUTOSTATS_ TARBETHBES) ;
END;

/

To disable the task altogether:

BEGIN
DBMS_AUTO_TASK_ADMIN.DISABLE(
client_name => 'auto optimizer stats collection’,
operation => NULL,
window_name => NULL);
END;
/

17

Understanding Optimizer Statistics

Improving the efficiency of Gathering Statistics

Once you define the statistics goelinterested igpu want to ensure to collect these statistics in a

timely mannefraditionally people have sped up statistics gathering by using parallel @xecution

di scussed above. However, what if all/|l of the obje
execution, how could you speed up gathering statistics on that schema?

Concurrent Statistic gathering

In Oracle Database 11g Release 2 (11.2.@2a¢urrentstatistics gathering mogas introduato

gather statistics on multiple tables in a schema (or database), and multiple (sub)partitions within a table
concurrently. Gathering statistics on multiple tables and (sub)partitions concurrentiyectire red

overall time it takes to gather statistics by allowing Oracle to fully utilizepeoomgsor

environment.

Concurrent statistics gathering is controlléddglobal preference ONCURRENWhich isset to
eitherTRUEOr FALSE. By default it is set ®ALSE. WhenCONCURRENT set torRUE Oracle

employs Oracle Job Scheduler and Advanced Queuing components to create and manage multiple
statistics gathering jobs concurrently.

CallingbBMS_STATS.GATHER_TABLE_STAT® a partitioed table wheGONCURRENS set torRUE
causes Oracle toeate a separate statistics gathering job for each (sub)partition in thaatable.
many of these jobs will execute concurrently, and how many will beshesestionhe number of
available jolqueue processa®B_QUEUE_PROCESSHStialization parametgrer node on a RAC
environment) and the available system resoliscé currently running jobs complete, more jobs
will be dequeued and executed untf #fie (sub)partitions have haditheatistics gathered.

If you gather statistics usibBMS_STATS.GATHER_DATABASE_STATS
DBMS_STATS.GATHER_SCHEMA_STA®SDBMS_STATS.GATHER_DICTIONARY_STATSthen Oracle

will create a separate statistics gathering job for eguértitioned table, arghch (sub)partition for

the partitioned tables. Each partitioned table will also have a coordinator job that manages its
(sub)partition jobs. The database will then run as many concurrent jobs as possible, and queue the
remaining jobs until the executioigsj complete. Howevéo, prevent possible deadlock scenarios
multiple partitioned tableannotbe processesimultaneouslydence, if there are some jobs running

for a partitioned table, other partitioned tables in a schema (or database or didtibeaueued

until the current one completes. There is no such restriction fpamnitioned tables.

The following figure illustrates the creaticjolod at different levels, whan
DBMS_STATS.GATHER_SCHEMA_STAd@mmand has been issued orsthisclemaOracle vill
create a statistics gathering job (Level 1 in Ri@umr each of the nepartitioned tables;

CHANNELS
COUNTRIES
CUSTOMERS
PRODUCTS
PROMOTIONS
TIMES

18

Understanding Optimizer Statistics

And, a coordinator job for each partitioned tableSAEESandCOSTS, it in turn creates a statistics
gathering job for each of partitiorsilLESandcosTSables, respectively (Level 2 in Figlre

Job8
Global

EVEL1 y

GATHER SCHEIVIA STATS

gb; l Job2 J6°Ibs l Job7
oba COSTS obs SALES

Job2.1 Job2.2 Job 2.29 Job7.1 JDb7Z Job 7.29
Partition Partition OSTS Partition

_ LEVEL2

Figure 20. List of the statistics gathering job created when Concurrent Statistics Gathering occurs on the SH schema

L e tsBusnaghatthe parametelOB_QUEUE_PROCESSEsset to 32the Oracle Job Scheduler would
allow 32 statistics gathering jobs to start, and would queue(tstasing that there are sufficient
system resources for 32 jolss)ppose thahefirst 29 jols (one for each partitigus the

coordinator job) for theosTstable get startethenthree norpartitioned table statistics gathering
jobs would also be started. The statistics gathering jobsSartseable will be automatically

gueued, becausely one partitioned tabkeprocessed at any one time. As each job finishes, another
job will be dequeued and started, untiladis (6 level 1 jobs and 58 level 2 jtias)e been
completedEach of the individual sistics gathering jatan also take advantage of parallel execution
as describes above under the parameGREE

Configuration and Settings

In Oracle Database 11.2.0.2, the concurrency setting for statistics gathering is turned off by default. It
can be turned on using tleldwing command.

BEGIN
DBMS_STATS.SET_GLOBAL_PREFS(CONCURRENT', TRUE");
END;

/

You will also need some additional privileges above and beyond the regular privileges required to
gather statistics. The user must have the following Job Scheduler awile8€spri

CREATE JOB
MANAGE SCHEDULER
MANAGE ANY QUEUE

19

Understanding Optimizer Statistics

ThesysAuxablespace should be online, as the Job Scheduler stores its internal tables and views in
SYSAUXablespacé&inally theJoB_QUEUE_PROCESSE@arameter should be set to fully utilize all of

the system resourcgailable (or allocated) the statistics gathering procesgolf don't plan to use
parallel execution you should setitt® QUEUE_PROCESSHKES 2 Xtotal number of CPU cores (this

is a per node parameter in a RAC environnidaefise make sure that you set this parametersystem
wise ALTER SYSTEM... or in init.ora file) dagr than at the session leyelTER SESSION).

If you are going to use parallel execution as part of concurrent statistics gadhshimgd disable
the PARALLEL_ADAPTIVE_MULTI_USERnitialization parameter. That is;

ALTER SYSTEM SET parallel_adaptive_multi_user=false;

It is also recommended that you enable parallel statement queuing. This requires Resource Manager to
be activated (if not already), areldreation of a temporary resource plan where the consumer group
"OTHER_GROUPShould have queuing enabled. By default, Resource Manager is activated only during
the maintenance windows. The following script illustrates one way of creating a teropeocary res

plan (pgg_test), and enabling the Resource Manager with this plan.

BEGIN
dbms_resource_manager.create_pending_area();
dbms_resource_manager.create_plan('pqq_test’, 'paq_test');
dbms_resource_manager.create_plan_directive(
'paq_test’,
'OTHER_GROUPS',
'OTHER_GROUPS directive for pqq’,
parallel_target_percentage=>90);
dbms_resource_manager.submit_pending_areal);
END;
/
ALTER SYSTEM SET RESOURCE_MANAGER_PLAN = 'pqq_test' SID="*";

Figure 21. Steps required to setup Resource Manager and parallel statement queuing for concurrent statistics
gathering executed in parallel

You should note that the automatic statistics gathering job doasemtly take advantage of
concurrency. Setti@PNCURREND TRUEWiIll have no impact on the automatic statistics gathering
job.

Gathering Statistics on Partitioned tables

Gathering stistics on partitioned tables consists of gathering statistics at both the table level and
partition level. Prior to Oracle Database 11g, adding a new partition or modifying data in a few
partitions required scanning the entire table to refrestetadidtatisticsif you skipped gathering the
global level statistjche Optimizerwouldextrapolate the global level statisiis®d on the existing

20

Understanding Optimizer Statistics

partition level statistic8his approacls accuratéor simple table statistics such as number ofdows
by aggregatintpe indivdual rowcount of all partitiordut other statistics cannot be determined
accurately: for exampieis not possible to accurately determine the number of distinct values for a
column (one of the most critical statistics bgeteOptimize) based on the individual statistics of

all partitions

Oracle Database 1éghances the statistics collection for partitioned tethethe introduction of
incremental global statistics. If tRkeREMENTAL preference for partitioned thle is set tdRUE the
DBMS_STATSSATHER_* STATS parameteGRANULARITYincludesGLOBAL and

ESTIMATE_PERCENTIis set toAUTO_SAMPLE_SIZE Oracle will gather statistics on the newtiparti
andaccuratelypdateall global levedtatistics by scanning only those partitions that have been added
or modified andnot the entire table.

Incrementatjlobal &tistics works by storingsynopd@ each partition in the table. A synopsis is
statistical metadata for that partition #wedcolumns in the partition. Each synopsis is stored in the
SYSAUxtablespace. Global statisticsla@@generated by aggregatingpduition level statistics and
thesynopses from each patrtition, thus eliminating the need to scan the entirgathiglettble level
statisticgsedrigure22). When a new partition is added to the tgbileonly need to gather statistics
for the new partition. The global statistics will be automatimdlccuratelypdatedusingthe new
partition synops&ndthe existing partitiodsynopses

1. Partition level stats are

athered & synopsis
Sales Table & ynop

created
May 155 2018 T\, 2 Global stats generated by
T @ aggregating partition level
statistics and synopsis

May 20t 2011 83

May 215t 2011

Global
s4 Statistic
May 224 2011 ?5
S6

May 23r¢ 2011

Sysaux Tablespace
Figure 22. Incremental Statistics gathering on a range partitioned table
Below ardhe steps necessary to use incremental global statistics.

Begin by switching on incremental statistics at either the table or tHewglbbal

BEGIN

DBMS_STATSSET_TABLE_PREFS(6 SINGREMEBRBE 80 RUEDS) ;
END;

/

21

Understanding Optimizer Statistics

Gather statistics on tlbject(s) as normal, letting H8TIMATE_PERCENTandGRANULARITY
parameters default.

BEGIN
DBMS_STATS. GATHER_TABLE_STATS(6SHO, 6SALESS) ;
END;

/

To check the current settingl@EREMENTALfor a given table, us8MS_STATSGET_PREFS

SELECT DBMS_STATS.GET_PREFS{INCREMENTAG, 6 SH6, 6 SALESO)
FROM dual;

Note thatINCREMENTALWill not be applied to the sphrtitions. Statistics will be gathered as normal
on the sukpartitions and on the partitions. Only the partition statistics will be used to determine the
global or table level statistics.

Managing statistics

In addition tocollect appropriate statistitss equally important to provide a comprehensive

framework for managing the@racle offers a number of methods to do this incltldéengbilityto

restore statistics to a previous version, the dptioansfer statistic froone system tanother, or

even manually setting the statistics values yourself. These options are extremely useful in,specific cases
butare not recommendéal replace standard statistics gatherathodsusing thebBMS_STATS

package.

Restoring Statistics

FromOracle Database 16gwardsywhen you gather statistics ugiB§!IS_STATSthe original
statistics are automatically kept as a backup in dictionanatalokes be easily restored by running
DBMS_STATS.RESTORE_TABLE_STA if the newly gathered statistezd to any kind of problem
The dictionaryiewDBA_TAB_STATS_HISTORtontains a list dimestamps when statistics were
saved for each table.

The example below restores the statistics for thestalgto what theyvere yesterdagind
automatically invalidates all of the cursors referencigwy tt&tablein theSHARED_POQIWe want
to invalidate all of theursorsh e c ause we ar e r e sandwartthegn to/impact er day 0 s
any cursor instantaneoushne value of thRO_INVALIDATE parameter determines if the cursors
referencing the tablgll be invalidated or not.
BEGIN
DBMS_STATS.RESTORE_TABLE_STATSWNname > O0SHO,
tabname > O6SALESOH,
as_of timestamp => SYSTIMESTAMP1

force => FALSE,
no_invalidate => FALSE);

END;

22

Understanding Optimizer Statistics

Pending Statistics

By default whestatistics are gatherdtey are published (written) immediately to the appropriate
dictionary tables and begin to be used b@phienizer In Oreacle Database 1,1igis possible to
gathelOptimizerstatistics but not have them published immediatelynsteadtore them in an
unpubl i s hed.lInstéad ef gothg intatide usual didtionary tehkestatistics are stored in
pending talels so that they can be tested before they are puliitsbsel pending statistazmn be
enabled for individual sessidns controlled fashigwhich allowsgou tovalidate thetatistics

before they angublished. Tactivate pending statistozdlecion, you need to usane of the
DBMS_STATS.SET_* PREFrocedursto change value of the paramet@BLISH from TRUE

(default) tarFALSE for the object(s) you wish to create pending statistics for.

BEGIN

DBMS_STATSSET_TABLE_PREFS(6SHO6, 6SALESS, 6PUBLI SHO6, 6FALSED) ;
END;

/

Gather statistics on the object(s) as normal.

BEGIN

DBMS_STATSGATHER_TABLE_STATS(6SHO&6, 6 SALESY) ;
END;

/

The statistics gathered for these objects can be displayed using the dictionary views called
USER_* PENDING_STATSYou can tell th®ptimizerto use pending statistlmgissuing an alter
session command to set the initialization paraomrteviZER_USE_PENDING_STAT$0 TRUEand
runninga SQL workloador tables accessed in the workload thabtbave pending statistics the
Optimizer will use the current statistics in the standard data dictionar@taklgsihavevalidated
the pending statistiggu can publish them using the procedure
DBMS_STATS.PUBLISH_PENDING_STATS

BEGIN
DBMS_STATSPUBLI SH_PENDI NG_STATS(6SHG6, 6 SALESH) ;
END;

/

Exporting / Importing Statistics

One of the most important aspects of rolling out a new application or a new part of an existing
application is testing it at scale. Idgally want the test system to be idahto production in terms
of hardware and data size. This is not always passisieommonly due to the size of the
production environments. Bgpyngthe Optimizerstatistics frona production database toyaother
system running the same Oracleimgrs.g, ascaleedown test databgseu can emulate the
Optimizerbehavioof a production environmerithe productiostatisticean be copied to the test
database using theMS_STATS.EXPORT_* STAT&NADBMS_STATS.IMPORT_* STATrocedures.

Before exporting statistics, ymed to create a tablestorethe statisticasing
DBMS_STATS.CREATE_STAT_TABLHEAfterthetablehas been creatggbu can export statistics from
the data diabnaryusing thedoBMS_STATS.EXPORT_* STAT®roceduresOnce tle statistics have

23

Understanding Optimizer Statistics

been packed into tisgatisticsable youcan theruse datadump txtract thestatisticsable from the
production databasendimport it into the test database. Once the statistics table is successfully
imported into the test systeyou carimportthe statisticénto the data dictionanging the
DBMS_STATS.IMPORT_*_STATrocedureslhe following example creates a statistics table called
TAB1 and exports the statistics from #iieschema into theySTATSstatistics table.

SOL> CREATE OR REPLACE DIRECTORY stats_dir AS '/home/oraclesmaria’:
Directory created,

SaL>

SOL> BEGIN
2 [dhnz_stats,create_stat_tablel ol . HTSIATS 5?'
3 Y
4/

PLASOL procedure successfully completed.

501>

SOl BEGIN
2 | doms_stats,export_schema_statslownnang=> "5H' ,stattab=> "MYSTATS)3)
3 T
4 7

PLASOL procedure successfully completed,

SaL>

SOL> exit

Disconnected from Oracle Database 11g Enterprise Edition Release 11,2,0,2,0 - B4bit Production
With the Partitioning. Real Application Clusters, Automatic Storage Management. OLAP,

Data Mining and Real Application Testing options

[oracle@slcadldbid blogl$
[oracleRsleatldb0d blog]$[expdp shish tables=MYSTATS directory=STATS_DIR dumpfile=sh_schema_stats.dwp logfilesexpdp_sh_stats,lo l

Export: Release 11,2,0,2,0 - Production on Fri Mow 4 15;14:26 2011
Copyright {c) 1982, 2009, Oracle andfor its affiliates. All rights reserved,

Connected to: Oracle Databaze 11g Enterprise Edition Release 11,2,0,2,0 - B4bit Production

With the Partitioning. Real Application Clusters, Automatic Storage Management., OLAP.

Data Mining and Real Application Testing options

Starting "SH"."SYS_EXPORT_TRBLE_O1": sho#*dkkikk ahles=MYSTATS directory=STATS_DIR dumpfile=sh_schema_stats.dwp logfile=expdp_s
. . exported “SH","HYSTATS" 1.684 MBE 16395 rous

Haster table "SH","SYS_EXPORT_TABLE_01" successfully loaded/unloaded

Dump file set for SH,SYS_EXPORT_TABLE_O1 is:
Shoneforaclesmariadsh_schema_stats ,dop

Job "SH","SYS_EXPORT_TABLE_01" successfully completed at 15:15:03

[oraclefzlcalldb0f marial$ cd blog

[oraclefzlca0ldb0d blogl$ cd

[oracleRslcalldbOs maria]$[impdp sh#sh tables=MYSTATS directory=STATS_DIR dumpfile=sh_schema_stats,dmp logfile=impdp_sh_stats,log]

Import: Release 11,2,0,2,0 - Production on Fri Mow 4 17:21:35 2011
Copyright {c) 1982, 2003, Oracle andfor its affiliates, ALl rights reserved,

Cornected to! Oracle Database 1lg Enterprize Edition Release 11,2,0,2,0 - B4bit Production

With the Partitioning. Real Application Clusters, Automatic Storage Management. OLAP,

Data Mining and Real Application Testing options

Master table "SH","SYS_IMPORT_TABLE_01" succeszsfully loaded/unloaded

Starting "SH","SYS_IMPORT_TRBLE_O1": sh/##sssssd {ahles=MYSTATS directory=STATS_DIR dumpfile=sh_schema_stats,dwp loafile=impdp_sh_stats,log
Job "SH","SYS_IMPORT_TABLE_01" successfully completed at 17:23:51

[oracleRslcatldbds marial$ sqlplus shish
SOL*Plus: Release 11,2,0,2,0 Production on Fri Mow 4 17:24:04 2011

Copyright (c) 1982, 2010, Oracle, All rights reserved,

Connected to

Oracle Database 11g Enterprise Edition Release 11.2,0,2,0 - B4bit Production

With the Partitioning. Real Application Clusters, Automatic Storage Management. OLAP,
Data Mining and Real Application Testing options

SDL LECIH

2 Ldbns_state,inport schens stats{ownane=>' S cstattab=> MISTATS ;)
3 END:

Fa

PLASOL procedure successfully completed,

Figure 23. Exporting the Optimizer statistics for the SH schema

24

Understanding Optimizer Statistics

Copying Partition Statistics

When dealing with partitioned tablesQp&imizerrelies on both the statistics for the entire table

(global statistics) as well as the statistics for the individtiahpggartition statistics) to select a

good execution plan for a SQL statement. If the query needs to access only a single partition, the
Optimizeruses only the statistics of the accessed patrtition. If the query access more than one patrtition,
it uses @ombination of global and partition statistics.

It is very common with range partitioned tables to have a new partition ashdexistingable and

rows inserted into just that partition. If ersgrs start to quettye newly insertethtabefore stastics

have been gatherdds possible to get a suboptimal execution plan dteddstatisticOne of the

mostcommon caseaxccurs whethe value supplied in a where clause predicate is outside the domain

of values represented by the [minimum, mex®jrolumn statistics.hi s i s knad-wn as an 6o
ranged er r beOptimizemprotates the seteetigty hased on the distance between the

predicate valyandthe maximum value (assuming the value is higher than the max), that is, the farther

the value is from the maximamminimumvalue, the lower the selectivity will be.

The "Out of Range" condition can be prevented by usiDgth& STATS.COPY_TABLE_STATS
procedurdavailable from Oracle Datab&6e2.0.4 onwarldsThis procedure copies the statistics
representativeource [sub] partition to thewly created and empistination [sub] partition. It also
copies the statistics of the dependent objects: columns, local (partitioneggiodéreminimum
andmaximum values of the partitioning colaramadijusteds follows;

1 If the partitioning type idASHthe minimum and maximum values of the destination partition are
same as that of the source partition.

1 If the partitioning type IST and the destination partition iIS@TDEFAUL Tpartition then the
minimum value of the destination partition is set to the minimum value of the value list that
describes the destination partition. The maximum value of the destination partitiornes set to t
maximum value of the value list that describes the destination partition

1 If the partitioning type IST andthe destination partition i©D&FAULTpartition, then the
minimum value of the destination partition is set to the minimum value of theaditi@e. The
maximum value of the destination partition is set to the maximum value of the source partition

1 If the partitioning type RANGEhen the minimum value of the destination partition is set to the
high bound of previous partition and the marn value of the destination partition is set to the
high bound of the destination partition unless the high bound of the destination partition is
MAXVALUEIn which case the maximum value of the destination partition is set to the high bound
of the previas partition

It canalsoscale the statistics (such as the numbesaxsbbr number of rows) based on the given
scale_factoiThe following command copies the statistics §8IES_Q3_2011 range partition to the

SALES_Q4 2011 partition of thesALEStabk and scales the basic statistics by a factor of 2
BEGIN
DBMS_STATS.COPY_TABLE_STATSH','SALES','SALES Q3_ 2002' 'SALES Q4 2002',2);

END;
/

25

Understanding Optimizer Statistics

Index statistics are only copied if the index partition names are the same as the table partition names
(this is the defaultglobal or table level statistics are not updated by default. The only time global level
statistics would be impacted bydB®1S STATS.COPY_TABLE_STATSprocedure would be if no

statistics existed at the global level and global statistics were being generated via aggregation.
Comparing Statistics

One of the key reasons an execution plan can differ from one sysiethdoivecase the
Optimizerstatistics on each system are diffefenexample when data on a test system is not 100%
in sync with real production systd@imidentify differences in statistite t
DBMS_STAT®IFF_TABLE_STATS_* functions can be used to compare statistics for a table from two
different sources. The statistitircegan be:

1 A user statistics table ahécurrent statistics in tliatadictionary

1 A single user statistics table containing two sets of sthigtazn be identified using statids
1 Two different user statistics tables

1 Two points in history

1 Current statistics and a point in history

1 Pending Statistics with the current statistics in the dictionary

1 Pending Statistics with a user statistics table

The function also compares the statistics of the dependent objects (indexes, columns, gradititions)
displaysll thestatistics for the object(s) from both sources if the difference between the statistics
exceeds a specified threshold. The threshold cpecifeed as an argument to the function; the
default value is 10%. The statistics corresponding to the first source will be used as the basis for
computing the differential percentage.

In the example below, we compare the current dictionary statistiegfartable with the statistics
for EMPIn the statistics tabf@B1; the SQL statement will generate a reggoshown ifrigure 2.

SELECT report, maxdiffpct
FROMt abl e(DBMS_STATS. DI FF_TABLE_STATS_I N_STATTAB(O6SCOTTO®, OE

26

Understanding Optimizer Statistics

DBMS_STATS.DIFF_TABLE_STATS IN_STATTAB(NULL,'EMP','TAB1")
HHHH R R R R R
STATISTICS DIFFERENCE REPORT FOR:
TABLE :EMP
OWNER :SCOTT
SOURCEA :User statisticstable TAB1
: Statid
:Owner :SCOTT
SOURCEB : Current Statistics in dictionary
PCTTHRESHOLD : 10

P P Pl P P o P Pl 3 P 8 P P P P 3 P 3 3 P 7 P P P 3 3 £ P P P o P o Pl P

COLUMN STATISTICS DIFFERENCE:

COL_NAME SRCNDV DENSITY HISTOGRAMNULLS LEN MIN MAX SIZE

DEPTNO A 3 333333333 NO 0 3 (C10B C11F 14
B 3 .035714285 YES 0 3 (C10B C11F 14

Figure 24. Report output after comparing the statistics for table SCOTT.EMP in the statistics table TAB1 and the
current statistics in the dictionary.

Locking Statistics

In some cases, you may want to prevent any new statistics from being gathered on a tadlg/or schem
lockingthe statisticOnce statistics are locked, no modifications can be made to those statistics until
the statistics have been unloakednless theORCBparameter of theATHER_* STATSprocedures

has been set tRUE

SOL> BEGIM
2 dbms_stats,lock_table_stats('SH', 'SALES')+
2 END:
4 7

FLASOL procedure successfully completed,

SOL> BEGIM
2 dbms_stats,gather_table_stats('SH', 'SALES')+
2 END:
4 7

BEGIN

*

ERROR at line 1:*

ORA-200052 object statiztics are locked (stattuype = ALLD
ORA-0EG12: at "SYS,DBMS_STATS", line 23104

ORA-OED1Z: at "SYS,DBMS_STATS". line 232059

ORA-0ED1Z: at line 2

SOL>

SOL> BEGIM
2 dbms_stats,gather_table_stats('SH', 'SALES' FORCE=>TRUE)+
3 EMD:
4 7

FLASOL procedure successfully completed,

Figure 25 Locking and unlocking table statistics

27

Understanding Optimizer Statistics

In Oracle Database 11g theMs_STAT$ackagavas expanded to allow statistics tlotleedand
unlocledat the partition level. These additional procedures allow for a finer granularity of control.

BEGIN
DBMS_STATSOCK_PARTITION _STATS(6 SHO6 , 6SBLES BS 8000);
END;

You should notehere is a hierarciyith locked statistics. For examplgoif lock the statistic on a
partitioned table, and then unlocked statistics on just one partition to ced@ther statistics on

that one partition it will fail with an error ORB005. The error occurs because the table level lock
will still be honoredven though the partition has been unlocKkeel statistics gather for the partition
will only be sucsesfully if the=ORCEparameter is set TRUE

S0l exec DBMS_STATS,COPY_TABLE_STATSC'SH'. 'SALES'. 'SALES_03_2002','SALES_O4_2002',20:
PLASOL procedure successfully completed,

SOL>

SOL>

SOL> BEGIN
2 dbms_stats, lock_table_stats('SH','SALES')+
3 EMD:
4 7

PLASOL procedure successfully completed,

SOL> BEGIN
2 dbme_statz,unlock_partition_stats('SH', 'SALES', 'SALES_04_2002')z
3 EMD:
4 /7

PLASOL procedure successfully completed,

SOL» BEGIM
2 dbmz_stats,gather_table_stats('SH', 'SALES', 'SALES_04_2002') :
3 END:
4 7

BEGIN

*

ERROR at line 1:

ORA-20005¢ object statistics are locked (stattype = ALL)
ORA-0B512: at “SY¥YS,DBMS_STATS", line 23104

ORA-0BD1Z: at "SYS,DBMS_STATS", line 23204

ORA-0ER1Z2: at line 2

SO BEGIM
2 dbms_stats,gather_table_stats('SH', 'SALES', 'SALES_04_2002' FORCE=>TRUE):
I EMD:
4 7

PLASOL procedure successfully completed,

Figure 26. Hierarchy with locked statistics; table level lock trumps partition level unlock

28

Understanding Optimizer Statistics

Manually setting Statistics

Under rare circumstances it may be beneficial to manuallyOg@trthizerstatistts in the data
dictionary. One such example could be a highly volatile global temporary table (note that while
manually setting statistics is discussed in this papeotifenerallyecommended, because
inaccurate or inconsistent statistics candgaabt perfornmg execution plan$tatistics can be
manually set usimBMS_STATS.SET* _STATS procedures

Other Types of Statistics

In addition b basic table, colunend index statistidke Optimizeruses additional information to
determine the execution plan of a statement. This additional information can come in the form of
dynamic samplirapdsystem statistics.

Dynamic Sampling

Dynamic sampling was introduced in Oracle Database 9i Releade@ &widitional statement
specific object statistidaring the optimization of a SQL statem&ht most common
misconception is that dynamic sampling can be used as a subsTipiteizerstatistics. The goal
of dynamic sampling is to augment thetiagi statistics; it is used when regular statistics are not
sufficient to get good quality cardinality estimates.

Sq how and when will dynamic sampling bduBeiring the compilation of a SQL statement, the
Optimizerdecides whether to use dynamic §ampr not by considering whether the available

statistics are sufficient to generate a good execution plan. If the available statistics are not enough,
dynamic sampling will be used. It is typically used to compensate for missing or insufficient statisti

that would otherwise lead to a very bad plan. For the case where one or more of the tables in the query
does not have statistics, dynamic sampling is useddptithzerto gather basic statistics on these

tables before optimizing the statement. Ttistics gathered in this case are not as high a quality or as
complete as the statistics gathered usimpthe STAT$ackage. This trade off is made to limit the

impact on the compile time of the statement.

The second scenario where dynamic sanmplisgd is when the statement contains a complex
predicate expressiandextended statistics are not availableannot be used. For example, if you
had a query that has requality where clause predicates on two correlated columns, standard
statisticsvould not be sufficient in this camed extended statistics could not be used. In this simple
guery against the SALES tattie Optimizerassumes that each of the where clause predicates will
reduce the number of rows returned by the paethbasedrothe standard statistidetermines the
cardinality to be 20,1,9vhen in fagtthe number of rows returned is ten times higher at 210,420.

SELECT count(*)
FROM sh.S ales
WHERE cust_id < 2222

29

Understanding Optimizer Statistics

AND prod_id > 5;

Id	Operation	Mame	Rows	Bytes	Cost (XCPUDI Time
0	SELECT STATEMENT			I G2B (10071	
1	SORT AGCREGATE		11 91		
21 PARTITION RAMCGE ALL		20497	AF7KL §28 (201 ooooioF		
1* 31 TABLE ACCESS STORAGE FULLI SALES 1f20197 I A77K1 G238 (231 0000207 |

Predicate Information (identified by operation id):

3 - storagel("CUST_ID"<2222 AND "PROD_ID":E)}
Filter{("CUST_ID"<2222 AND "PROD_ID">H))

Figure 27. Execution plan for complex predicates without dynamic sampling

With standard statistics @etimizeris not aware of the correlation between the CUST_ID and
PROD_ID in the SALES table. By settdRJ'IMIZER_DYNAMIC_SAMPLINGO level 6, th®ptimizer

will use dynamic samplitwggather additional information about the complex predicate expression.
The additional information provided by dynamic sampling allo@ptthezerto generate a more
accurate cardinality estimatedtherefore a better performing execution plan.

I Id | Operation | Hame | Rows | Bytes | Cost (2CPUDI Time |

01 | I | I 528 (10071
1| SORT AGGREGATE | I 11 91 |
2 | PARTITION RANGE ALL | I 1813K1 528 (2)1 00:00:
31 THBLE ACCESS STORAGE FULLI SALES | | 208KI| 1813K1 528 (21 003003

| SELECT STATEMENT
|
|
|

*

3 = storage(("CUST_ID"<2222 AND "PROD_ID">S))
filter{("CUST_ID"<2222 AND "PROD_ID">S))

*[dgnamic: sanpling used for this statement (level=6)]

Figure 28. Execution plan for complex predicates with dynamic sampling level 6

As seen in this example, dynamic sampling is controlled by the parameter
OPTIMIZER_DYNAMIC_SAMPLINGWhich can be set to different level$Q These levels control two
differentthings; when dynamic sampling kickaridhow large a sample size will be used to gather
the statistics. The greater the samplglsizbigger impact dynamic sampling has on the compilation
time of a query.

From Oracle Database 11g Release 2 ontrer@ptimizerwill automatically decide if dynamic
sampling will be usefalndwhat dynamic sampling level will be used for SQL statements executed in
parallel. This decision is basethersize of the tables in the statemantithe complexity of the
predicates. However, if tb@TIMIZER_DYNAMIC_SAMPLINGarameter is explicitly set to a-non

default value, then thagerspecified value will be honored. You can tell if dynamic sampling kicks in
by looking at thehotedsection othe execution plan. For examiflehe parallel execution was

enabled for theALEStable andthe following query was isspiba Optimizerwould automatically

enable dynamic sampling level 4.

30

Understanding Optimizer Statistics

Figure 29. Execution plan for a SQL statement with complex predicates executed in parallel

For serial SQL statemerite dynamic sampling level will depend on the value of the
OPTIMIZER_DYNAMIC_SAMPLINGarameterandwill not be tiggered automatically by ®gtimizer
The reason for this is that serial statémare typically short runniagdany overhead at compile
time could have a huge impact on their performance. Whereas parallel stateexpeistein be
more resource intensive, so the additional overhead at compile time is worth ittteeastire
possiblexecution plan.

System statistics

In Oracle Database, 9ystem statistics were introdUmeenable th©ptimizerto more accurately
cost each operation in an execution plan by using information about the actual system hardware
executing the statement, such as CPU speed and IO performance.

System statistics ameabled by defaptndare automatically initialized with default values; these
values darerepresemttive for mossystem. When system statistiesgatheretthey will override
these initial values. To gather system statistics you bBMSSBTATS.GATHER_SYSTEM_STATS
duringa representatiwveorkload time windowdeally at peak workload times

31

