

An Oracle White Paper

January 2012

Understanding Optimizer Statistics

Understanding Optimizer Statistics

Introduction ... 1

What are Optimizer Statistics? .. 2

Table and Column Statistics .. 2

Additional column statistics .. 3

Index Statistics .. 10

Gathering Statistics ... 11

GATHER_TABLE_STATS ... 11

Changing the default value for the parameters in
DBMS_STATS.GATHER_*_STATS .. 13

Automatic Statistics Gathering Job .. 15

Improving the efficiency of Gathering Statistics 18

Concurrent Statistic gathering.. 18

Gathering Statistics on Partitioned tables 20

Managing statistics .. 22

Restoring Statistics .. 22

Pending Statistics .. 23

Exporting / Importing Statistics .. 23

Copying Partition Statistics .. 25

Comparing Statistics .. 26

Locking Statistics ... 27

Manually setting Statistics ... 29

Other Types of Statistics ... 29

Dynamic Sampling ... 29

System statistics .. 31

Statistics on Dictionary Tables ... 32

Statistics on Fixed Objects .. 32

Conclusion .. 33

Understanding Optimizer Statistics

 1

Introduction

When the Oracle database was first introduced the decision of how to execute a SQL

statement was determined by a Rule Based Optimizer (RBO). The Rule Based Optimizer, as

the name implies, followed a set of rules to determine the execution plan for a SQL statement.

The rules were ranked so if there were two possible rules that could be applied to a SQL

statement the rule with the lowest rank would be used.

In Oracle Database 7, the Cost Based Optimizer (CBO) was introduced to deal with the

enhanced functionality being added to the Oracle Database at this time, including parallel

execution and partitioning, and to take the actual data content and distribution into account.

The Cost Based Optimizer examines all of the possible plans for a SQL statement and picks

the one with the lowest cost, where cost represents the estimated resource usage for a given

plan. The lower the cost the more efficient an execution plan is expected to be. In order for the

Cost Based Optimizer to accurately determine the cost for an execution plan it must have

information about all of the objects (tables and indexes) accessed in the SQL statement, and

information about the system on which the SQL statement will be run.

This necessary information is commonly referred to as Optimizer statistics. Understanding

and managing Optimizer statistics is key to optimal SQL execution. Knowing when and how to

gather statistics in a timely manner is critical to maintaining acceptable performance. This

whitepaper is the first in a two part series on Optimizer statistics, and describes in detail, with

worked examples, the different concepts of Optimizer statistics including;

¶ What are Optimizer statistics

¶ Gathering statistics

¶ Managing statistics

¶ Additional types of statistics

Understanding Optimizer Statistics

2

What are Optimizer Statistics?

Optimizer statistics are a collection of data that describe the database, and the objects in the database.

These statistics are used by the Optimizer to choose the best execution plan for each SQL statement.

Statistics are stored in the data dictionary, and can be accessed using data dictionary views such as

USER_TAB_STATISTICS. Optimizer statistics are different from the performance statistics visible

through V$ views. The information in the V$ views relates to the state of the system and the SQL

workload executing on it.

Figure 1. Optimizer Statistics stored in the data dictionary used by the Optimizer to determine execution plans

Table and Column Statistics

Table statistics include information on the number of rows in the table, the number of data blocks

used for the table, as well as the average row length in the table. The Optimizer uses this information,

in conjunction with other statistics, to compute the cost of various operations in an execution plan,

and to estimate the number of rows the operation will produce. For example, the cost of a table access

is calculated using the number of data blocks combined with the value of the parameter

DB_FILE_MULTIBLOCK_READ_COUNT. You can view table statistics in the dictionary view

USER_TAB_STATISTICS.

Column statistics include information on the number of distinct values in a column (NDV) as well as

the minimum and maximum value found in the column. You can view column statistics in the

dictionary view USER_TAB_COL_STATISTICS . The Optimizer uses the column statistics information

in conjunction with the table statistics (number of rows) to estimate the number of rows that will be

Understanding Optimizer Statistics

3

returned by a SQL operation. For example, if a table has 100 records, and the table access evaluates an

equality predicate on a column that has 10 distinct values, then the Optimizer, assuming uniform data

distribution, estimates the cardinality to be the number of rows in the table divided by the number of

distinct values for the column or 100/10 = 10.

Figure 2. Cardinality calculation using basic table and column statistics

Additional column statistics

Basic table and column statistics tell the optimizer a great deal but they donõt provide a mechanism to

tell the Optimizer about the nature of the data in the table or column. For example, these statistics

canõt tell the Optimizer if there is a data skew in a column, or if there is a correlation between columns

in a table. Information on the nature of the data can be provided to the Optimizer by using extensions

to basic statistics like, histograms, column groups, and expression statistics.

Histograms

Histograms tell the Optimizer about the distribution of data within a column. By default (without a

histogram), the Optimizer assumes a uniform distribution of rows across the distinct values in a

column. As described above, the Optimizer calculates the cardinality for an equality predicate by

dividing the total number of rows in the table by the number of distinct values in the column used in

the equality predicate. If the data distribution in that column is not uniform (i.e., a data skew) then the

cardinality estimate will be incorrect. In order to accurately reflect a non-uniform data distribution, a

histogram is required on the column. The presence of a histogram changes the formula used by the

Optimizer to estimate the cardinality, and allows it to generate a more accurate execution plan.

Oracle automatically determines the columns that need histograms based on the column usage

information (SYS.COL_USAGE$) , and the presence of a data skew. For example, Oracle will not

automatically create a histogram on a unique column if it is only seen in equality predicates.

There are two types of histograms, frequency or height-balanced. Oracle determines the type of

histogram to be created based on the number of distinct values in the column.

Understanding Optimizer Statistics

4

Frequency Histograms

Frequency histograms are created when the number of distinct values in the column is less than 254.

Oracle uses the following steps to create a frequency histogram.

1. Letõs assume that Oracle is creating a frequency histogram on the PROMO_CATEGORY_ID

column of the PROMOTIONS table. The first step is to select the PROMO_CATEGORY_ID from

the PROMOTIONS table ordered by PROMO_CATEGORY_ID.

2. Each PROMO_CATEGORY_ID is then assigned to its own histogram bucket (Figure 3).

Figure 3. Step 2 in frequency histogram creation

3. At this stage we could have more than 254 histogram buckets, so the buckets that hold the

same value are then compressed into the highest bucket with that value. In this case, buckets 2

through 115 are compressed into bucket 115, and buckets 484 through 503 are compressed

into bucket 503, and so on until the total number of buckets remaining equals the number of

distinct values in the column (Figure 4). Note the above steps are for illustration purposes.

The DBMS_STATS package has been optimized to build compressed histograms directly.

Understanding Optimizer Statistics

5

Figure 4. Step 3 in frequency histogram creation: duplicate buckets are compressed

4. The Optimizer now accurately determines the cardinality for predicates on the

PROMO_CATEGORY_ID column using the frequency histogram. For example, for the predicate

PROMO_CATEGORY_ID =10, the Optimizer would first need to determine how many buckets

in the histogram have 10 as their end point. It does this by finding the bucket whose endpoint

is 10, bucket 503, and then subtracts the previous bucket number, bucket 483, 503 - 483 = 20.

Then the cardinality estimate would be calculated using the following formula (number of

bucket endpoints / total number of bucket) X NUM_ROWS, 20/503 X 503, so the number

of rows in the PROMOTOINS table where PROMO_CATEGORY_ID =10 is 20.

Height balanced Histograms

Height-balanced histograms are created when the number of distinct values in the column is greater

than 254. In a height-balanced histogram, column values are divided into buckets so that each bucket

contains approximately the same number of rows. Oracle uses the following steps to create a height-

balanced histogram.

1. Letõs assume that Oracle is creating a height-balanced histogram on the CUST_CITY_ID

column of the CUSTOMERS table because the number of distinct values in the CUST_CITY_ID

column is greater than 254 . Just like with a frequency histogram, the first step is to

select the CUST_CITY_ID from the CUSTOMERS table ordered by CUST_CITY_ID.

2. There are 55,500 rows in the CUSTOMERS table and there is a maximum of 254 buckets in a

histogram. In order to have an equal number of rows in each bucket, Oracle must put 219

rows in each bucket. The 219th CUST_CITY_I D from step one will become the endpoint for

the first bucket. In this case that is 51043. The 438th CUST_CITY_I D from step one will

become the endpoint for the second bucket, and so on until all 254 buckets are filled (Figure

5).

Understanding Optimizer Statistics

6

Figure 5. Step 2 of height-balance histogram creation: put an equal number of rows in each bucket

3. Once the buckets have been created Oracle checks to see if the endpoint of the first bucket is

the minimum value for the CUST_CITY_I D column. If it is not, a òzeroó bucket is added to

the histogram that has the minimum value for the CUST_CITY_I D column as its end point

(Figure 6).

Figure 6. Step 3 of height-balance histogram creation: add a zero bucket for the min value

4. Just as with a frequency histogram, the final step is to compress the height-balanced

histogram, and remove the buckets with duplicate end points. The value 51166 is the end

Understanding Optimizer Statistics

7

point for bucket 24 and bucket 25 in our height-balanced histogram on the CUST_CITY_I D

column. So, bucket 24 will be compressed in bucket 25 (Figure 7).

Figure 7. Step 4 of height-balance histogram creation

5. The Optimizer now computes a better cardinality estimate for predicates on the

CUST_CITY_ID column by using the height-balanced histogram. For example, for the

predicate CUST_CITY_ID =51806, the Optimizer would first check to see how many buckets

in the histogram have 51806 as their end point. In this case, the endpoint for bucket

136,137,138 and 139 is 51806(info found in USER_HISTOGRAMS). The Optimizer then uses

the following formula:

(Number of bucket endpoints / total number of buckets) X number of rows in the table

In this case 4/254 X 55500 = 874

Figure 8. Height balanced histogram used for popular value cardinality estimate

However, if the predicate was CUST_CITY_ID =52500, which is not the endpoint for any

bucket then the Optimizer uses a different formula. For values that are the endpoint for only

one bucket or are not an endpoint at all, the Optimizer uses the following formula:

 DENSITY X number of rows in the table

Understanding Optimizer Statistics

8

where DENSITY is calculated ôon the flyõ during optimization using an internal formula based

on information in the histogram. The value for DENSITY seen in the dictionary view

USER_TAB_COL_STATISTICS is not the value used by the Optimizer from Oracle Database

10.2.0.4 onwards. This value is recorded for backward compatibility, as this is the value used

in Oracle Database 9i and earlier releases of 10g. Furthermore, if the parameter

OPTIMIZER_FEATURES_ENABLE is set to version release earlier than 10.2.0.4, the value for

DENSITY in the dictionary view will be used.

Figure 9. Height balanced histogram used for non- popular value cardinality estimate

Extended Statistics

In Oracle Database 11g, extensions to column statistics were introduced. Extended statistics

encompasses two additional types of statistics; column groups and expression statistics.

Column Groups

In real-world data, there is often a relationship (correlation) between the data stored in different

columns of the same table. For example, in the CUSTOMERS table, the values in the

CUST_STATE_PROVINCE column are influenced by the values in the COUNTRY_ID column, as the state

of California is only going to be found in the United States. Using only basic column statistics, the

Optimizer has no way of knowing about these real-world relationships, and could potentially

miscalculate the cardinality if multiple columns from the same table are used in the where clause of a

statement. The Optimizer can be made aware of these real-world relationships by having extended

statistics on these columns as a group.

By creating statistics on a group of columns, the Optimizer can compute a better cardinality estimate

when several the columns from the same table are used together in a where clause of a SQL statement.

You can use the function DBMS_STATS.CREATE_EXTENDED_STATS to define a column group you

want to have statistics gathered on as a group. Once a column group has been created, Oracle will

automatically maintain the statistics on that column group when statistics are gathered on the table, just

like it does for any ordinary column (Figure 10).

Understanding Optimizer Statistics

9

Figure 10. Creating a column group on the CUSTOMERS table

After creating the column group and re-gathering statistics, you will see an additional column, with a

system-generated name, in the dictionary view USER_TAB_COL_STATISTICS. This new column

represents the column group (Figure 11).

Figure 11. System generated column name for a column group in USER_TAB_COL_STATISTICS

To map the system-generated column name to the column group and to see what other extended

statistics exist for a user schema, you can query the dictionary view USER_STAT_EXTENSIONS (Figure

12).

Figure 12. Information about column groups is stored in USER_STAT_EXTENSIONS

The Optimizer will now use the column group statistics, rather than the individual column statistics

when these columns are used together in where clause predicates. Not all of the columns in the column

Understanding Optimizer Statistics

10

group need to be present in the SQL statement for the Optimizer to use extended statistics; only a

subset of the columns is necessary.

Expression Statistics

It is also possible to create extended statistics for an expression (including functions), to help the

Optimizer to estimate the cardinality of a where clause predicate that has columns embedded inside

expressions. For example, if it is common to have a where clause predicate that uses the UPPER

function on a customerõs last name, UPPER(CUST_LAST_NAME)=:B1 , then it would be beneficial to

create extended statistics for the expression UPPER(CUST_LAST_NAME) (Figure 13).

Figure 13. Extended statistics can also be created on expressions

Just as with column groups, statistics need to be re-gathered on the table after the expression statistics

have been defined. After the statistics have been gathered, an additional column with a system-

generated name will appear in the dictionary view USER_TAB_COL_STATISTICS representing the

expression statistics. Just like for column groups, the detailed information about expression statistics

can be found in USER_STAT_EXTENSIONS.

Restrictions on Extended Statistics

Extended statistics can only be used when the where the clause predicates are equalities or in-lists.

Extended statistics will not be used if there are histograms present on the underlying columns and

there is no histogram present on the column group.

Index Statistics

Index statistics provide information on the number of distinct values in the index (distinct keys), the

depth of the index (blevel), the number of leaf blocks in the index (leaf_blocks), and the clustering

factor1. The Optimizer uses this information in conjunction with other statistics to determine the cost

of an index access. For example the Optimizer will use b-level, leaf_blocks and the table statistics

num_rows to determine the cost of an index range scan (when all predicates are on the leading edge of

the index).

1 Chapter 11 of the Oracle® Database Performance Tuning Guide

http://download.oracle.com/docs/cd/B28359_01/server.111/b28274/optimops.htm

Understanding Optimizer Statistics

11

Gathering Statistics

For database objects that are constantly changing, statistics must be regularly gathered so that they

accurately describe the database object. The PL/SQL package, DBMS_STATS, is Oracleõs preferred

method for gathering statistics, and replaces the now obsolete ANALYZE2 command for collecting

statistics. The DBMS_STATS package contains over 50 different procedures for gathering and managing

statistics but most important of these procedures are the GATHER_* _STATS procedures. These

procedures can be used to gather table, column, and index statistics. You will need to be the owner of

the object or have the ANALYZE ANY system privilege or the DBA role to run these procedures. The

parameters used by these procedures are nearly identical, so this paper will focus on the

GATHER_TABLE_STATS procedure.

GATHER_TABLE_STATS

The DBMS_STATS.GATHER_TABLE_STATS procedure allows you to gather table, partition, index, and

column statistics. Although it takes 15 different parameters, only the first two or three parameters need

to be specified to run the procedure, and are sufficient for most customers;

¶ The name of the schema containing the table

¶ The name of the table

¶ A specific partition name if itõs a partitioned table and you only want to collect statistics for a

specific partition (optional)

Figure 14. Using the DBMS_STATS.GATHER_TABLE_STATS procedure

The remaining parameters can be left at their default values in most cases. Out of the remaining 12

parameters, the following are often changed from their default and warrant some explanation here.

ESTIMATE_PERCENT parameter

The ESTIMATE_PERCENT parameter determines the percentage of rows used to calculate the statistics.

The most accurate statistics are gathered when all rows in the table are processed (i.e., 100% sample),

often referred to as computed statistics. Oracle Database 11g introduced a new sampling algorithm

that is hash based and provides deterministic statistics. This new approach has the accuracy close to a

2 ANALYZE command is still used to VALIDATE or LIST CHAINED ROWS.

Understanding Optimizer Statistics

12

100% sample but with the cost of, at most, a 10% sample. The new algorithm is used when

ESTIMATE_PERCENT is set to AUTO_SAMPLE_SIZE (the default) in any of the

DBMS_STATS.GATHER_*_STATS procedures. Historically, customers have set the

ESTIMATE_PRECENT parameter to a low value to ensure that the statistics will be gathered quickly.

However, without detailed testing, it is difficult to know which sample size to use to get accurate

statistics. It is highly recommended that from Oracle Database 11g onward you let

ESTIMATE_PRECENT default (i.e., not set explicitly).

METHOD_OPT parameter

The METHOD_OPT parameter controls the creation of histograms during statistics collection.

Histograms are a special type of column statistic created when the data in a table column has a non-

uniform distribution, as discussed in the previous section of this paper. With the default value of FOR

ALL COLUMNS SIZE AUTO, Oracle automatically determines which columns require histograms and

the number of buckets that will be used based on the column usage information

(DBMS_STATS.REPORT_COL_USAGE) and the number of distinct values in the column. The column

usage information reflects an analysis of all the SQL operations the database has processed for a given

object. Column usage tracking is enabled by default.

A column is a candidate for a histogram if it has been seen in a where clause predicate, e.g., an equality,

range, LIKE, etc. Oracle also verifies if the column data is skewed before creating a histogram, for

example a unique column will not have a histogram created on it if it is only seen in equality predicates.

It is strongly recommended you let the METHOD_OPT parameter default in the GATHER_*_STATS

procedures.

DEGREE parameter

The DEGREE parameter controls the number of parallel server processes that will be used to gather the

statistics. By default Oracle uses the same number of parallel server processes specified as an attribute

of the table in the data dictionary (Degree of Parallelism). By default, all tables in an Oracle database

have this attribute set to 1, so it may be useful to set this parameter if statistics are being gathered on a

large table to speed up statistics collection. By setting the parameter DEGREE to AUTO_DEGREE, Oracle

will automatically determine the appropriate number of parallel server processes that should be used to

gather statistics, based on the size of an object. The value can be between 1 (serial execution) for small

objects to DEFAULT_DEGREE (PARALLEL_THREADS_PER_CPU X CPU_COUNT) for larger objects.

GRANULARITY parameter

The GRANULARITY parameter dictates the levels at which statistics are gathered on a partitioned table.

The possible levels are table (global), partition, or sub-partition. By default Oracle will determine which

levels are necessary based on the tableõs partitioning strategy. Statistics are always gathered on the first

level of partitioning regardless of the partitioning type used. Sub-partition statistics are gathered when

the subpartitioning type is LIST or RANGE. This parameter is ignored if the table is not partitioned.

Understanding Optimizer Statistics

13

CASCADE parameter

The CASCADE parameter determines whether or not statistics are gathered for the indexes on a table.

By default, AUTO_CASCADE, Oracle will only re-gather statistics for indexes whose table statistics are

stale. Cascade is often set to false when a large direct path data load is done and the indexes are

disabled. After the load has been completed, the indexes are rebuilt and statistics will be automatically

created for them, negating the need to gather index statistics when the table statistics are gathered.

NO_INVALIDATE parameter

The NO_INVALIDATE parameter determines if dependent cursors (cursors that access the table whose

statistics are being re-gathered) will be invalidated immediately after statistics are gathered or not. With

the default setting of DBMS_STATS.AUTO_INVALIDATE, cursors (statements that have already been

parsed) will not be invalidated immediately. They will continue to use the plan built using the previous

statistics until Oracle decides to invalidate the dependent cursors based on internal heuristics. The

invalidations will happen gradually over time to ensure there is no performance impact on the shared

pool or spike in CPU usage as there could be if you have a large number of dependent cursors and all

of them were hard parsed at once.

Changing the default value for the parameters in DBMS_STATS.GATHER_*_STATS

You can specify a particular non-default parameter value for an individual
DBMS_STATS.GATHER_*_STATS command, or override the default value for your database. You can
override the default parameter values for DBMS_STATS.GATHER_*_STATS procedures using the
DBMS_STATS.SET_*_PREFS procedures. The list of parameters that can be changed are as follows:

AUTOSTATS_TARGET (SET_GLOBAL_PREFS only as it relates to the auto stats job)

CONCURRENT (SET_GLOBAL_PREFS only)

CASCADE

DEGREE

ESTIMATE_PERCENT

METHOD_OPT

NO_INVALIDATE

GRANULARITY

PUBLISH

INCREMENTAL

STALE_PERCENT

You can override the default settings for each parameter at a table, schema, database, or global level

using one of the following DBMS_STATS.SET_*_PREFS procedures, with the exception of

AUTOSTATS_TARGET and CONCURRENT which can only be modified at the global level.

SET_TABLE_PREFS

SET_SCHEMA_PREFS

SET_DATABASE_PREFS

SET_GLOBAL_PREFS

Understanding Optimizer Statistics

14

The SET_TABLE_PREFS procedure allows you to change the default values of the parameters used by

the DBMS_STATS.GATHER_*_STATS procedures for the specified table only.

The SET_SCHEMA_PREFS procedure allows you to change the default values of the parameters used by

the DBMS_STATS.GATHER_*_STATS procedures for all of the existing tables in the specified schema.

This procedure actually calls the SET_TABLE_PREFS procedure for each of the tables in the specified

schema. Since it uses SET_TABLE_PREFS, calling this procedure will not affect any new objects

created after it has been run. New objects will pick up the GLOBAL preference values for all parameters.

The SET_DATABASE_PREFS procedure allows you to change the default values of the parameters used

by the DBMS_STATS.GATHER_*_STATS procedures for all of the user-defined schemas in the database.

This procedure actually calls the SET_TABLE_PREFS procedure for each table in each user-defined

schema. Since it uses SET_TABLE_PREFS this procedure will not affect any new objects created after it

has been run. New objects will pick up the GLOBAL preference values for all parameters. It is also

possible to include the Oracle owned schemas (sys, system, etc) by setting the ADD_SYS parameter to

TRUE.

The SET_GLOBAL_PREFS procedure allows you to change the default values of the parameters used by

the DBMS_STATS.GATHER_*_STATS procedures for any object in the database that does not have an

existing table preference. All parameters default to the global setting unless there is a table preference

set, or the parameter is explicitly set in the GATHER_*_STATS command. Changes made by this

procedure will affect any new objects created after it has been run. New objects will pick up the

GLOBAL_PREFS values for all parameters.

With SET_GLOBAL_PREFS it is also possible to set a default value for two additional parameters,

AUTOSTAT_TARGET and CONCURRENT. AUTOSTAT_TARGET controls what objects the automatic

statistic gathering job (that runs in the nightly maintenance window) will look after. The possible values

for this parameter are ALL, ORACLE , and AUTO. The default value is AUTO. A more in-depth discussion

about the automatic statistics collection can be found in the statistics management section of this

paper.

The CONCURRENT parameter controls whether or not statistics will be gathered on multiple tables in a

schema (or database), and multiple (sub)partitions within a table concurrently. It is a Boolean

parameter, and is set to FALSE by default. The value of the CONCURRENT parameter does not

impact the automatic statistics gathering job, which always does one object at a time. A more in-depth

discussion about concurrent statistics gathering can be found in the Improving the efficiency of

Gathering Statistics section of this paper.

The DBMS_STATS.GATHER_*_STATS procedures and the automatic statistics gathering job obeys the

following hierarchy for parameter values; parameter values explicitly set in the command overrule

everything else. If the parameter has not been set in the command, we check for a table level

preference. If there is no table preference set, we use the GLOBAL preference.

Understanding Optimizer Statistics

15

Figure 15. DBMS_STATS.GATHER_*_STATS hierarchy for parameter values

If you are unsure of what preferences have been set, you can use the DBMS_STATS.GET_PREFS

function to check. The function takes three arguments; the name of the parameter, the schema name,

and the table name. In the example below (figure 16), we first check the value of STALE_PRECENT on

the SH.SALES table. Then we set a table level preference, and check that it took affect using

DBMS_STATS.GET_PREFS.

Figure 16. Using DBMS_STATS.SET_PREFS procedure to change the parameter stale_percent for the sales table

Automatic Statistics Gathering Job

Oracle will automatically collect statistics for all database objects, which are missing statistics or have

stale statistics by running an Oracle AutoTask task during a predefined maintenance window (10pm to

2am weekdays and 6am to 2am at the weekends).

This AutoTask gathers Optimizer statistics by calling the internal procedure

DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC. This procedure operates in a very similar

Understanding Optimizer Statistics

16

fashion to the DBMS_STATS.GATHER_DATABASE_STATS procedure using the GATHER AUTO option.

The primary difference is that Oracle internally prioritizes the database objects that require statistics, so

that those objects, which most need updated statistics, are processed first. You can verify that the

automatic statistics gathering job exists by querying the DBA_AUTOTASK_CLIENT_JOB view or through

Enterprise Manager (Figure 17). You can also change the maintenance window that the job will run in

through Enterprise Manager.

Figure 17. Checking that the automatic statistics gathering job is enabled

Statistics on a table are considered stale when more than STALE_PERCENT (default 10%) of the rows

are changed (total number of inserts, deletes, updates) in the table. Oracle monitors the DML activity

for all tables and records it in the SGA. The monitoring information is periodically flushed to disk, and

is exposed in the *_TAB_MODIFICATIONS view.

Understanding Optimizer Statistics

17

Figure 18. Querying USER_TAB_MODIFICATIONS view to check DML activity on the PRODUCTS2 table

It is possible to manually flush this data by calling the procedure

DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO if you want to get up-to-date information at
query time (internally the monitoring data is flushed before all statistics collection operations). You can
then see which tables have stale statistics by querying the STALE_STATS column in the
USER_TAB_STATISTICS view.

Figure 19. Querying USER_TAB_STATISTICS to see if any tables have stale statistics

Tables where STALE_STATS is set to NO, have up to date statistics. Tables where STALE_STATS is set

to YES, have stale statistics. Tables where STALE_STATS is not set are missing statistics altogether.

If you already have a well-established statistics gathering procedure or if for some other reason you

want to disable automatic statistics gathering for your main application schema, consider leaving it on

for the dictionary tables. You can do this by changing the value of AUTOSTATS_TARGET to ORACLE

instead of AUTO using DBMS_STATS.SET_GLOBAL_PREFS procedure.

BEGIN

 DBMS_STATS.SET_GLOBAL_PREFS(óAUTOSTATS_TARGETô,ô ORACLEô);

END;

/

To disable the task altogether:

BEGIN

 DBMS_AUTO_TASK_ADMIN.DISABLE(

 client_name => 'auto optimizer stats collection',

 operation => NULL,

 window_name => NULL);

END;

/

Understanding Optimizer Statistics

18

Improving the efficiency of Gathering Statistics

Once you define the statistics you are interested in, you want to ensure to collect these statistics in a

timely manner. Traditionally people have sped up statistics gathering by using parallel execution as

discussed above. However, what if all of the objects a schema were small and didnõt warrant parallel

execution, how could you speed up gathering statistics on that schema?

Concurrent Statistic gathering

In Oracle Database 11g Release 2 (11.2.0.2), a concurrent statistics gathering mode was introduced to

gather statistics on multiple tables in a schema (or database), and multiple (sub)partitions within a table

concurrently. Gathering statistics on multiple tables and (sub)partitions concurrently can reduce the

overall time it takes to gather statistics by allowing Oracle to fully utilize a multi-processor

environment.

Concurrent statistics gathering is controlled by the global preference, CONCURRENT, which is set to

either TRUE or FALSE. By default it is set to FALSE. When CONCURRENT is set to TRUE, Oracle

employs Oracle Job Scheduler and Advanced Queuing components to create and manage multiple

statistics gathering jobs concurrently.

Calling DBMS_STATS.GATHER_TABLE_STATS on a partitioned table when CONCURRENT is set to TRUE,

causes Oracle to create a separate statistics gathering job for each (sub)partition in the table. How

many of these jobs will execute concurrently, and how many will be queued is based on the number of

available job queue processes (JOB_QUEUE_PROCESSES initialization parameter, per node on a RAC

environment) and the available system resources. As the currently running jobs complete, more jobs

will be dequeued and executed until all of the (sub)partitions have had their statistics gathered.

If you gather statistics using DBMS_STATS.GATHER_DATABASE_STATS,

DBMS_STATS.GATHER_SCHEMA_STATS, or DBMS_STATS.GATHER_DICTIONARY_STATS, then Oracle

will create a separate statistics gathering job for each non-partitioned table, and each (sub)partition for

the partitioned tables. Each partitioned table will also have a coordinator job that manages its

(sub)partition jobs. The database will then run as many concurrent jobs as possible, and queue the

remaining jobs until the executing jobs complete. However, to prevent possible deadlock scenarios

multiple partitioned tables cannot be processed simultaneously. Hence, if there are some jobs running

for a partitioned table, other partitioned tables in a schema (or database or dictionary) will be queued

until the current one completes. There is no such restriction for non-partitioned tables.

The following figure illustrates the creation of jobs at different levels, when a

DBMS_STATS.GATHER_SCHEMA_STATS command has been issued on the SH schema. Oracle will

create a statistics gathering job (Level 1 in Figure 20) for each of the non-partitioned tables;

CHANNELS,

COUNTRIES,

CUSTOMERS,

PRODUCTS,

PROMOTIONS,

TIMES

Understanding Optimizer Statistics

19

And, a coordinator job for each partitioned table, i.e., SALES and COSTS, it in turn creates a statistics

gathering job for each of partition in SALES and COSTS tables, respectively (Level 2 in Figure 20).

Figure 20. List of the statistics gathering job created when Concurrent Statistics Gathering occurs on the SH schema

Letõs assume that the parameter JOB_QUEUE_PROCESSES is set to 32, the Oracle Job Scheduler would

allow 32 statistics gathering jobs to start, and would queue the rest (assuming that there are sufficient

system resources for 32 jobs). Suppose that the first 29 jobs (one for each partition plus the

coordinator job) for the COSTS table get started, then three non-partitioned table statistics gathering

jobs would also be started. The statistics gathering jobs for the SALES table will be automatically

queued, because only one partitioned table is processed at any one time. As each job finishes, another

job will be dequeued and started, until all 64 jobs (6 level 1 jobs and 58 level 2 jobs) have been

completed. Each of the individual statistics gathering job can also take advantage of parallel execution

as describes above under the parameter DEGREE.

Configuration and Settings

In Oracle Database 11.2.0.2, the concurrency setting for statistics gathering is turned off by default. It

can be turned on using the following command.

BEGIN

DBMS_STATS.SET_GLOBAL_PREFS('CONCURRENT','TRUE');

END;

/

You will also need some additional privileges above and beyond the regular privileges required to

gather statistics. The user must have the following Job Scheduler and AQ privileges:

CREATE JOB

MANAGE SCHEDULER

MANAGE ANY QUEUE

Understanding Optimizer Statistics

20

The SYSAUX tablespace should be online, as the Job Scheduler stores its internal tables and views in

SYSAUX tablespace. Finally the JOB_QUEUE_PROCESSES parameter should be set to fully utilize all of

the system resources available (or allocated) for the statistics gathering process. If you don't plan to use

parallel execution you should set the JOB_QUEUE_PROCESSES to 2 X total number of CPU cores (this

is a per node parameter in a RAC environment). Please make sure that you set this parameter system-

wise (ALTER SYSTEM ... or in init.ora file) rather than at the session level (ALTER SESSION).

If you are going to use parallel execution as part of concurrent statistics gathering you should disable

the PARALLEL_ADAPTIVE_MULTI_USER initialization parameter. That is;

ALTER SYSTEM SET parallel_adaptive_multi_user=false;

It is also recommended that you enable parallel statement queuing. This requires Resource Manager to

be activated (if not already), and the creation of a temporary resource plan where the consumer group

"OTHER_GROUPS" should have queuing enabled. By default, Resource Manager is activated only during

the maintenance windows. The following script illustrates one way of creating a temporary resource

plan (pqq_test), and enabling the Resource Manager with this plan.

Figure 21. Steps required to setup Resource Manager and parallel statement queuing for concurrent statistics

gathering executed in parallel

You should note that the automatic statistics gathering job does not currently take advantage of

concurrency. Setting CONCURRENT to TRUE will have no impact on the automatic statistics gathering

job.

Gathering Statistics on Partitioned tables

Gathering statistics on partitioned tables consists of gathering statistics at both the table level and

partition level. Prior to Oracle Database 11g, adding a new partition or modifying data in a few

partitions required scanning the entire table to refresh table-level statistics. If you skipped gathering the

global level statistics, the Optimizer would extrapolate the global level statistics based on the existing

Understanding Optimizer Statistics

21

partition level statistics. This approach is accurate for simple table statistics such as number of rows ð

by aggregating the individual rowcount of all partitions - but other statistics cannot be determined

accurately: for example, it is not possible to accurately determine the number of distinct values for a

column (one of the most critical statistics used by the Optimizer) based on the individual statistics of

all partitions.

Oracle Database 11g enhances the statistics collection for partitioned tables with the introduction of

incremental global statistics. If the INCREMENTAL preference for a partitioned table is set to TRUE, the

DBMS_STATS.GATHER_*_STATS parameter GRANULARITY includes GLOBAL, and

ESTIMATE_PERCENT is set to AUTO_SAMPLE_SIZE, Oracle will gather statistics on the new partition,

and accurately update all global level statistics by scanning only those partitions that have been added

or modified, and not the entire table.

Incremental global statistics works by storing a synopsis for each partition in the table. A synopsis is

statistical metadata for that partition and the columns in the partition. Each synopsis is stored in the

SYSAUX tablespace. Global statistics are then generated by aggregating the partition level statistics and

the synopses from each partition, thus eliminating the need to scan the entire table to gather table level

statistics (see Figure 22). When a new partition is added to the table, you only need to gather statistics

for the new partition. The global statistics will be automatically and accurately updated using the new

partition synopsis and the existing partitionsõ synopses.

Figure 22. Incremental Statistics gathering on a range partitioned table

Below are the steps necessary to use incremental global statistics.

Begin by switching on incremental statistics at either the table or the global level.

BEGIN

DBMS_STATS.SET_TABLE_PREFS(óSHô,ôSALESô,óINCREMENTALô,ôTRUEô);
END;

/

Understanding Optimizer Statistics

22

Gather statistics on the object(s) as normal, letting the ESTIMATE_PERCENT and GRANULARITY

parameters default.

BEGIN

DBMS_STATS.GATHER_TABLE_STATS(óSHô,ôSALESô);

END;

/

To check the current setting of INCREMENTAL for a given table, use DBMS_STATS.GET_PREFS.

SELECT DBMS_STATS.GET_PREFS(óINCREMENTALô,óSHô,ôSALESô)

FROM dual;

Note that INCREMENTAL will not be applied to the sub-partitions. Statistics will be gathered as normal

on the sub-partitions and on the partitions. Only the partition statistics will be used to determine the

global or table level statistics.

Managing statistics

In addition to collect appropriate statistics, it is equally important to provide a comprehensive

framework for managing them. Oracle offers a number of methods to do this including the ability to

restore statistics to a previous version, the option to transfer statistic from one system to another, or

even manually setting the statistics values yourself. These options are extremely useful in specific cases,

but are not recommended to replace standard statistics gathering methods using the DBMS_STATS

package.

Restoring Statistics

From Oracle Database 10g onwards, when you gather statistics using DBMS_STATS, the original

statistics are automatically kept as a backup in dictionary tables, and can be easily restored by running

DBMS_STATS.RESTORE_TABLE_STATS if the newly gathered statistics lead to any kind of problem.

The dictionary view DBA_TAB_STATS_HISTORY contains a list of timestamps when statistics were

saved for each table.

The example below restores the statistics for the table SALES to what they were yesterday, and

automatically invalidates all of the cursors referencing the SALES table in the SHARED_POOL. We want

to invalidate all of the cursors; because we are restoring yesterdayõs statistics and want them to impact

any cursor instantaneously. The value of the NO_INVALIDATE parameter determines if the cursors

referencing the table will be invalidated or not.

BEGIN

DBMS_STATS.RESTORE_TABLE_STATS(ownname => óSHô,

 tabname => óSALESô,

 as_of_timestamp => SYSTIMESTAMP- 1

 force => FALSE,

 no_invalidate => FALSE);

END;

/

Understanding Optimizer Statistics

23

Pending Statistics

By default when statistics are gathered, they are published (written) immediately to the appropriate

dictionary tables and begin to be used by the Optimizer. In Oracle Database 11g, it is possible to

gather Optimizer statistics but not have them published immediately; and instead store them in an

unpublished, ôpendingõ state. Instead of going into the usual dictionary tables, the statistics are stored in

pending tables so that they can be tested before they are published. These pending statistics can be

enabled for individual sessions, in a controlled fashion, which allows you to validate the statistics

before they are published. To activate pending statistics collection, you need to use one of the

DBMS_STATS.SET_*_PREFS procedures to change value of the parameter PUBLISH from TRUE

(default) to FALSE for the object(s) you wish to create pending statistics for.

BEGIN

DBMS_STATS.SET_TABLE_PREFS(óSHô,ôSALESô,óPUBLISHô,ôFALSEô);
END;

/

Gather statistics on the object(s) as normal.

BEGIN

DBMS_STATS.GATHER_TABLE_STATS(óSHô,ôSALESô);
END;

/

The statistics gathered for these objects can be displayed using the dictionary views called

USER_*_PENDING_STATS. You can tell the Optimizer to use pending statistics by issuing an alter

session command to set the initialization parameter OPTIMIZER_USE_PENDING_STATS to TRUE and

running a SQL workload. For tables accessed in the workload that do not have pending statistics the

Optimizer will use the current statistics in the standard data dictionary tables. Once you have validated

the pending statistics, you can publish them using the procedure

DBMS_STATS.PUBLISH_PENDING_STATS.

BEGIN

DBMS_STATS.PUBLISH_PENDING_STATS(óSHô,ôSALESô);

END;

/

Exporting / Importing Statistics

One of the most important aspects of rolling out a new application or a new part of an existing

application is testing it at scale. Ideally, you want the test system to be identical to production in terms

of hardware and data size. This is not always possible, most commonly due to the size of the

production environments. By copying the Optimizer statistics from a production database to any other

system running the same Oracle version, e.g., a scaled-down test database, you can emulate the

Optimizer behavior of a production environment. The production statistics can be copied to the test

database using the DBMS_STATS.EXPORT_*_STATS and DBMS_STATS.IMPORT_*_STATS procedures.

Before exporting statistics, you need to create a table to store the statistics using

DBMS_STATS.CREATE_STAT_TABLE. After the table has been created, you can export statistics from

the data dictionary using the DBMS_STATS.EXPORT_*_STATS procedures. Once the statistics have

Understanding Optimizer Statistics

24

been packed into the statistics table, you can then use datadump to extract the statistics table from the

production database, and import it into the test database. Once the statistics table is successfully

imported into the test system, you can import the statistics into the data dictionary using the

DBMS_STATS.IMPORT_*_STATS procedures. The following example creates a statistics table called

TAB1 and exports the statistics from the SH schema into the MYSTATS statistics table.

Figure 23. Exporting the Optimizer statistics for the SH schema

Understanding Optimizer Statistics

25

Copying Partition Statistics

When dealing with partitioned tables the Optimizer relies on both the statistics for the entire table

(global statistics) as well as the statistics for the individual partitions (partition statistics) to select a

good execution plan for a SQL statement. If the query needs to access only a single partition, the

Optimizer uses only the statistics of the accessed partition. If the query access more than one partition,

it uses a combination of global and partition statistics.

It is very common with range partitioned tables to have a new partition added to an existing table, and

rows inserted into just that partition. If end-users start to query the newly inserted data before statistics

have been gathered, it is possible to get a suboptimal execution plan due to stale statistics. One of the

most common cases occurs when the value supplied in a where clause predicate is outside the domain

of values represented by the [minimum, maximum] column statistics. This is known as an ôout-of-

rangeõ error. In this case, the Optimizer prorates the selectivity based on the distance between the

predicate value, and the maximum value (assuming the value is higher than the max), that is, the farther

the value is from the maximum or minimum value, the lower the selectivity will be.

The "Out of Range" condition can be prevented by using the DBMS_STATS.COPY_TABLE_STATS

procedure (available from Oracle Database 10.2.0.4 onwards). This procedure copies the statistics of a

representative source [sub] partition to the newly created and empty destination [sub] partition. It also

copies the statistics of the dependent objects: columns, local (partitioned) indexes, etc. The minimum

and maximum values of the partitioning column are adjusted as follows;

¶ If the partitioning type is HASH the minimum and maximum values of the destination partition are

same as that of the source partition.

¶ If the partitioning type is LIST and the destination partition is a NOT DEFAULT partition then the

minimum value of the destination partition is set to the minimum value of the value list that

describes the destination partition. The maximum value of the destination partition is set to the

maximum value of the value list that describes the destination partition

¶ If the partitioning type is LIST and the destination partition is a DEFAULT partition, then the

minimum value of the destination partition is set to the minimum value of the source partition. The

maximum value of the destination partition is set to the maximum value of the source partition

¶ If the partitioning type is RANGE then the minimum value of the destination partition is set to the

high bound of previous partition and the maximum value of the destination partition is set to the

high bound of the destination partition unless the high bound of the destination partition is

MAXVALUE, in which case the maximum value of the destination partition is set to the high bound

of the previous partition

It can also scale the statistics (such as the number of blocks, or number of rows) based on the given

scale_factor. The following command copies the statistics from SALES_Q3_2011 range partition to the

SALES_Q4_2011 partition of the SALES table and scales the basic statistics by a factor of 2.

BEGIN

DBMS_STATS.COPY_TABLE_STATS('SH','SALES','SALES_Q3_ 2002' ,'SALES_Q4_ 2002' , 2);

END;

/

Understanding Optimizer Statistics

26

Index statistics are only copied if the index partition names are the same as the table partition names

(this is the default). Global or table level statistics are not updated by default. The only time global level

statistics would be impacted by the DBMS_STATS.COPY_TABLE_STATS procedure would be if no

statistics existed at the global level and global statistics were being generated via aggregation.

Comparing Statistics

One of the key reasons an execution plan can differ from one system to another is because the

Optimizer statistics on each system are different, for example when data on a test system is not 100%

in sync with real production system. To identify differences in statistics, the

DBMS_STATS.DIFF_TABLE_STATS_* functions can be used to compare statistics for a table from two

different sources. The statistic sources can be:

¶ A user statistics table and the current statistics in the data dictionary

¶ A single user statistics table containing two sets of statistics that can be identified using statids

¶ Two different user statistics tables

¶ Two points in history

¶ Current statistics and a point in history

¶ Pending Statistics with the current statistics in the dictionary

¶ Pending Statistics with a user statistics table

The function also compares the statistics of the dependent objects (indexes, columns, partitions), and

displays all the statistics for the object(s) from both sources if the difference between the statistics

exceeds a specified threshold. The threshold can be specified as an argument to the function; the

default value is 10%. The statistics corresponding to the first source will be used as the basis for

computing the differential percentage.

In the example below, we compare the current dictionary statistics for the EMP table with the statistics

for EMP in the statistics table TAB1; the SQL statement will generate a report as shown in Figure 24.

SELECT report, maxdiffpct

FROM table(DBMS_STATS.DIFF_TABLE_STATS_IN_STATTAB(óSCOTTô,ôEMPô,ôTAB1ô));

Understanding Optimizer Statistics

27

Figure 24. Report output after comparing the statistics for table SCOTT.EMP in the statistics table TAB1 and the

current statistics in the dictionary.

Locking Statistics

In some cases, you may want to prevent any new statistics from being gathered on a table or schema by

locking the statistics. Once statistics are locked, no modifications can be made to those statistics until

the statistics have been unlocked or unless the FORCE parameter of the GATHER_*_STATS procedures

has been set to TRUE.

Figure 25 Locking and unlocking table statistics

Understanding Optimizer Statistics

28

In Oracle Database 11g the DBMS_STATS package was expanded to allow statistics to be locked and

unlocked at the partition level. These additional procedures allow for a finer granularity of control.

BEGIN

DBMS_STATS.LOCK_PARTITION_STATS(óSHô,ôSALESô, 'SALES_Q3_2000');

END;

You should note there is a hierarchy with locked statistics. For example, if you lock the statistic on a

partitioned table, and then unlocked statistics on just one partition in order to re-gather statistics on

that one partition it will fail with an error ORA-20005. The error occurs because the table level lock

will still be honored even though the partition has been unlocked. The statistics gather for the partition

will only be successfully if the FORCE parameter is set to TRUE.

Figure 26. Hierarchy with locked statistics; table level lock trumps partition level unlock

Understanding Optimizer Statistics

29

Manually setting Statistics

Under rare circumstances it may be beneficial to manually set the Optimizer statistics in the data

dictionary. One such example could be a highly volatile global temporary table (note that while

manually setting statistics is discussed in this paper, it is not generally recommended, because

inaccurate or inconsistent statistics can lead to poor performing execution plans). Statistics can be

manually set using DBMS_STATS.SET_* _STATS procedures.

Other Types of Statistics

In addition to basic table, column, and index statistics, the Optimizer uses additional information to

determine the execution plan of a statement. This additional information can come in the form of

dynamic sampling and system statistics.

Dynamic Sampling

Dynamic sampling was introduced in Oracle Database 9i Release 2 to collect additional statement-

specific object statistics during the optimization of a SQL statement. The most common

misconception is that dynamic sampling can be used as a substitute for Optimizer statistics. The goal

of dynamic sampling is to augment the existing statistics; it is used when regular statistics are not

sufficient to get good quality cardinality estimates.

So, how and when will dynamic sampling be used? During the compilation of a SQL statement, the

Optimizer decides whether to use dynamic sampling or not by considering whether the available

statistics are sufficient to generate a good execution plan. If the available statistics are not enough,

dynamic sampling will be used. It is typically used to compensate for missing or insufficient statistics

that would otherwise lead to a very bad plan. For the case where one or more of the tables in the query

does not have statistics, dynamic sampling is used by the Optimizer to gather basic statistics on these

tables before optimizing the statement. The statistics gathered in this case are not as high a quality or as

complete as the statistics gathered using the DBMS_STATS package. This trade off is made to limit the

impact on the compile time of the statement.

The second scenario where dynamic sampling is used is when the statement contains a complex

predicate expression, and extended statistics are not available, or cannot be used. For example, if you

had a query that has non-equality where clause predicates on two correlated columns, standard

statistics would not be sufficient in this case, and extended statistics could not be used. In this simple

query against the SALES table, the Optimizer assumes that each of the where clause predicates will

reduce the number of rows returned by the query, and based on the standard statistics, determines the

cardinality to be 20,197, when in fact, the number of rows returned is ten times higher at 210,420.

SELECT count(*)

FROM sh.S ales

WHERE cust_id < 2222

Understanding Optimizer Statistics

30

AND prod_id > 5;

Figure 27. Execution plan for complex predicates without dynamic sampling

With standard statistics the Optimizer is not aware of the correlation between the CUST_ID and

PROD_ID in the SALES table. By setting OPTIMIZER_DYNAMIC_SAMPLING to level 6, the Optimizer

will use dynamic sampling to gather additional information about the complex predicate expression.

The additional information provided by dynamic sampling allows the Optimizer to generate a more

accurate cardinality estimate, and therefore a better performing execution plan.

Figure 28. Execution plan for complex predicates with dynamic sampling level 6

As seen in this example, dynamic sampling is controlled by the parameter

OPTIMIZER_DYNAMIC_SAMPLING, which can be set to different levels (0-10). These levels control two

different things; when dynamic sampling kicks in, and how large a sample size will be used to gather

the statistics. The greater the sample size, the bigger impact dynamic sampling has on the compilation

time of a query.

From Oracle Database 11g Release 2 onwards, the Optimizer will automatically decide if dynamic

sampling will be useful, and what dynamic sampling level will be used for SQL statements executed in

parallel. This decision is based on the size of the tables in the statement, and the complexity of the

predicates. However, if the OPTIMIZER_DYNAMIC_SAMPLING parameter is explicitly set to a non-

default value, then that user-specified value will be honored. You can tell if dynamic sampling kicks in

by looking at the ônoteõ section of the execution plan. For example, if the parallel execution was

enabled for the SALES table, and the following query was issued, the Optimizer would automatically

enable dynamic sampling level 4.

Understanding Optimizer Statistics

31

Figure 29. Execution plan for a SQL statement with complex predicates executed in parallel

For serial SQL statements, the dynamic sampling level will depend on the value of the

OPTIMIZER_DYNAMIC_SAMPLING parameter, and will not be triggered automatically by the Optimizer.

The reason for this is that serial statements are typically short running, and any overhead at compile

time could have a huge impact on their performance. Whereas parallel statements are expected to be

more resource intensive, so the additional overhead at compile time is worth it to ensure the best

possible execution plan.

System statistics

In Oracle Database 9i, system statistics were introduced to enable the Optimizer to more accurately

cost each operation in an execution plan by using information about the actual system hardware

executing the statement, such as CPU speed and IO performance.

System statistics are enabled by default, and are automatically initialized with default values; these

values do are representative for most system. When system statistics are gathered they will override

these initial values. To gather system statistics you can use DBMS_STATS.GATHER_SYSTEM_STATS

during a representative workload time window, ideally at peak workload times.

